Dentine is a major component of teeth and is responsible for many of their functions, such as mastication and neural sensation/transduction. Over the past decades, numerous studies have focused on dentine development and regeneration using a variety of research models, including in vivo, ex vivo and in vitro models. In vivo animal models play a crucial role in the exploration of biochemical factors that are involved in dentine development, whereas ex vivo and in vitro models contribute mainly to the identification of biophysical factors in dentine regeneration, of which mechanical force is most critical. In the present review, research models involved in studies related to dentine development and regeneration were screened from publications released in recent years and summarised comprehensively, particularly in vivo animal models including prokaryotic microinjection, Cre/LoxP, CRISPR/Cas9, ZFN and TALEN, and scaffold-based in vitro and ex vivo models. The latter were further divided by the interactive forces. Summarising these research models will not only benefit the development of future dentine-related studies but also provide hints regarding the evolution of novel dentine regeneration strategies.
Schlagwörter: dentine development, dentine regeneration, research models, scaffolding system, transgenic mice