PubMed ID (PMID): 22010075Pages 947-954, Language: EnglishIto, Kenji / Yamada, Yoichi / Nakamura, Sayaka / Ueda, MinoruPurpose: The aim of this comparative study was to investigate cell-based effective bone engineering and the correlation between the osseointegration of dental implants and tissue-engineered bone using dental pulp stem cells (DPSC), bone marrow stem cells (BMSC), and periosteal cells (PC).
Materials and Methods: The first molar and all premolars were extracted from the mandibles of three dogs, and in each dog, six bone defects (three on each side) were prepared with a 10-mm-diameter trephine bur after 4 weeks. Different materials were implanted in the defects and the sites were allowed to heal. The experimental groups were as follows: (1) dog DPSC and platelet-rich plasma (PRP) (dDPSC/PRP), (2) dog BMSC and PRP (dBMSC/PRP), (3) dog PC and PRP (dPC/PRP), and (4) control (defect only). Eight weeks later, dental implants were placed in the defects. After another 8 weeks, the amount of bone regeneration was assessed by histologic and histomorphometric analyses (bone-implant contact).
Results: The mean bone-implant contact values were 66.7% ± 3.6% for group 1 (dDPSC/PRP), 62.5% ± 3.1% for group 2 (dBMSC/PRP), 39.4% ± 2.4% for group 3 (dPC/PRP), and 30.3% ± 2.6% for the control group.
Conclusions: DPSC showed the highest osteogenic potential and may be a useful cell source for tissue-engineered bone around dental implants.
Keywords: bone marrow stem cells, bone regeneration, dental pulp stem cells, periosteal cells, platelet-rich plasma, tissue engineering