Objective: To analyse the pan-genome of three black-pigmented periodontal pathogens: Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens.
Methods: Pan-genome analyses of 66, 33 and 5 publicly available whole-genome sequences of P. gingivalis, P. intermedia and P. nigrescens, respectively, were performed using Pan-genome Analysis Pipeline software (version 1.2.1; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China). Phylogenetic trees were constructed based on the entire pan-genome and single nucleotide polymorphisms within the core genome. The distribution and abundance of virulence genes in the core and dispensable genomes were also compared in the three species.
Results: All three species possess an open pan-genome. The core genome of P. gingivalis, P. intermedia and P. nigrescens included 1001, 1514 and 1745 orthologous groups, respectively, which were mainly related to basic cellular functions such as metabolism. The dispensable genome of P. gingivalis, P. intermedia and P. nigrescens was composed of 2814, 2689 and 906 orthologous groups, respectively, and it was enriched in genes involved in pathogenicity or with unknown functions. Phylogenetic trees presented a clear separation of P. gingivalis, P. intermedia and P. nigrescens, verifying the reclassification of the black-pigmented species. Furthermore, the three species shared almost the same virulence factors involved in adhesion, proteolysis and evasion of host defences. Some of these virulence genes were conserved across species whereas others belonged to the dispensable genome, which might be acquired through horizontal gene transfer.
Conclusion: This study highlighted the usefulness of pan-genome analysis to infer evolutionary cues for black-pigmented species, indicating their homology and phylogenomic diversity.
Keywords: core genome, pan-genome, Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens