We use cookies to enable the functions required for this website, such as login or a shopping cart. You can find more information in our privacy policy.
Purpose: Currently, no consensus exists regarding the best adhesion protocol for zirconia used in dentistry; this is important particularly for restorations where mechanical retention is deficient. This systematic review analyzed the adhesion potential of resin-based and glass-ionomer luting cements to zirconia and aimed to highlight the possible dominant factors affecting the bond strength results to this substrate.
Materials and Methods: Original scientific papers on adhesion to zirconia published in the MEDLINE (PubMed) database between 01/01/1995 and 01/06/2011 were included in this systematic review. The following MeSH terms, search terms, and their combinations were used: "Dental bonding", "Zirconium", "Zirconia", "Y-TZP", "Y-TZP ceramic", "Materials Testing/methods", "Test", "Cement", and "Resin bonding". Two reviewers performed screening and data abstraction. Descriptive statistics were performed and the frequencies of the studied parameters, means, standard deviations, confidence intervals (95% CI; uncorrected and corrected), median values, and interquartile ranges (IQR) were calculated for the bond strength data reported for different factor levels: surface conditioning methods (control, physicochemical, physical, chemical), cements (bis-GMA-, MDP-, and 4-META-based resin cements, self-adhesive cements, glass ionomer), aging with and without thermocycling (TC), and test methods (macroshear, microshear, macrotensile, and microtensile).
Results: The final search provided 177 titles with abstracts. Further abstract screening yielded 72 articles, out of which 54 were found potentially appropriate to be included. After full text evaluation, 2 of these were eliminated. The selection process resulted in the final sample of 52 studies. In total, 169 different surface conditioning methods, mainly combinations of air-abrasion protocols and adhesive promoters (primers or silanes), were investigated. Altogether, the use of 5 types of cements and 4 testing methods was reported. While 26 studies were performed without TC as aging, 26 of them employed thermocycling at varying number of cycles. This review highlighted that adhesion of the luting cements is significantly influenced by the surface conditioning method (p = 0.044), cement type (p = 0.018), test method (p = 0.017) and aging condition (p = 0.003). In nonconditioned control groups without thermocycling, mean bond strength values ranged between 1.15 (IQR = 3.54) and 8.93 (IQR = 9), and 6.9 (IQR = 0) and 8.73 (IQR = 13.93) MPa for macroshear and macrotensile tests, respectively. After physical conditioning method, MDP monomer based cement presented the highest bond values compared to those of other resin cements using either the macrotensile (no TC: 34.2; IQR = 24.18 MPa, TC: 42.35; IQR = 0 MPa) or microtensile (no TC: 37.2; IQR = 41.5 MPa, TC: 17.1; IQR = 31.15 MPa) test method.
Conclusion: Based on the results of this systematic review, increased adhesion could be expected after physicochemical conditioning of zirconia. MDP-based resin cements tend to present higher results than those of other cements types when tested using macro- and microtensile tests. Adhesion studies on zirconia and reporting of data require more standardization.
Schlagwörter: adhesion, bond strength, dental cements, meta-analysis, surface conditioning, systematic review, test methods, zirconia
Purpose: This study evaluated the effects of pH cycling on fluoride release and bond strength of two self-etching adhesive systems to both enamel and dentin. The ultramorphology of the interfaces produced by the adhesive systems were also analyzed.
Materials and Methods: The buccal surfaces of bovine incisors were flattened to expose enamel and dentin, which were bonded with either Clearfil Protect Bond (CPB) or One-Up Bond F Plus (OBP). The bonded samples were prepared for microtensile bond strength (μTBS) testing, fluoride ion release, and transmission electron microscopy. pH cycling comprised demineralization (8 h/day) and remineralization (16 h/day) cycles for 8 days. The μTBS data were analyzed by two-way ANOVA, while fluoride release was analyzed using the Friedman and Wilcoxon tests.
Results: The adhesives presented similar bond strengths to enamel. However, the dentin bond strength of CPB was higher than that of OBP. pH cycling did not influence enamel or dentin μTBS. The amount of fluoride released from the bonded enamel and dentin was low and varied among the groups. The morphological evaluation showed that the thickness of the dentin hybrid layers was similar for both adhesives.
Conclusion: The pH-cycling regime did not affect enamel or dentin bond strengths. In enamel, both the self-etching adhesives tested presented similar bond strengths, but in dentin, Clearfil Protect Bond showed higher dentin bonding than One-Up Bond F Plus.
Schlagwörter: dental enamel, dentin, adhesives, fluoride, bond strength
Purpose: This study assessed the effect of antioxidants vitamin C (Vit. C), vitamin E (Vit. E) and quercetin (Querc) on the dentin bonding performance, degree of conversion, and rate of polymerization of three commercial adhesive systems (Adper Single Bond 2 [SB], Clearfil SE Bond [CSE], Adper Easy Bond [EB]).
Materials and Methods: Human premolars were restored using antioxidant-doped adhesives. The samples were stored for 24 h in distilled water or 6 months under simulated pulpal pressure. Teeth were cut into sticks and the microtensile bond strength (μTBS) to dentin was tested in a universal testing machine. Qualitative nanoleakage analysis was performed from a central stick of each restored tooth. Degree of conversion and rate of polymerization of adhesive systems were evaluated in triplicate using real-time FT-IR.
Results: Although the inclusion of the antioxidants negatively affected the μTBS over 24 h, the antioxidant-doped adhesives maintained (SB-Vit. C, SB-Vit. E, CSE-Vit. C, EB-Querc) or increased (SB-Querc, CSE-Vit. E, CSE-Querc, EB-Vit. E, and EB-Vit. C) their μTBS during 6 months of storage. Only the μTBS of Adper Single Bond 2 dropped significantly after 6 months among the control groups. Slight changes in the nanoleakage pattern after aging were observed in all groups, except for the EB-control group, which showed a noteworthy increase in nanoleakage after 6 months, and for EB-Vit. C, which presented a remarkable decrease. A lower degree of conversion was obtained with all antioxidants in SB and EB, except for the EB-Vit. E group. Similar degrees of conversion were attained in control and experimental groups for CSE. The rate of polymerization was reduced in antioxidant-doped adhesives.
Conclusion: The performance of antioxidants changed according to the adhesive system to which they were added, and antioxidant-doped adhesives appear to have a positive effect on the adhesive interface durability, since their bond strength obtained after 24 h was maintained or increased over time.
Schlagwörter: polymers, free radicals, hydrolysis, dentin adhesives
Purpose: This study evaluated the influence of punch and base orifice diameters on push-out test results by means of finite element analysis (FEA).
Materials and Methods: FEA was performed using 3D models of the push-out test with 3 base orifice diameters (2.5, 3.0, and 3.5 mm) and 3 punch diameters (0.5, 1.0, and 1.5 mm) using MARC/MENTAT (MSC.Software). The image of a cervical slice from a root restored with a fiberglass post was used to construct the models. The mechanical properties of dentin, post, and resin cement were obtained from the literature. Bases and punches were constructed as rigid bodies. A 10-N force was applied by the punch in the center of the post in a nonlinear contact analysis. Modified von Mises stress, maximum principal stress, as well as shear and normal stress components were calculated.
Results: Both punch and base orifice sizes influenced the stress distribution of the push-out test. Bases with larger diameters and punches with smaller diameters caused higher stress in dentin and at the dentin/cement interface.
Conclusion: FEA showed that the diameter of the orifice base had a more significant influence on the stress distribution than did the punch diameter. For this reason, both factors should be taken into account during push-out experimental tests.
Schlagwörter: bond strength, standardization, base size, punch diameter, finite element analysis
Purpose: To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin.
Materials and Methods: Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests.
Results: Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth.
Conclusion: Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.
Schlagwörter: all-in-one adhesives, one-bottle adhesives, adhesion, dentin bonding, deciduous teeth
Purpose: To evaluate the marginal microleakage and the infiltration ability of pit-and-fissure sealants by applying the conventional sealing technique in comparison to using an additional bonding agent.
Materials and Methods: Extracted non-carious permanent molars (n = 60) were first stored in sterile saline solution and then assigned to one of two groups: group C (control) was sealed (Helioseal F) by using the conventional technique, while in group BA (bonding agent), a bonding agent (OptiBond FL) was additionally applied prior to sealing. The teeth were thermocycled (1000 cycles, 5°C to 55°C, dwell time 30 s), then varnished and immersed in 5% methylene blue solution for 24 h. After embedding and sectioning each tooth into 6-12 slices, the presence of microleakage, unfilled areas, and air bubbles trapped in the sealant were assessed with a stereomicroscope.
Results: A higher proportion of microleakage was found under sealants applied without the additional use of the bonding agent. A statistically significant difference in microleakage was noted between the groups (p = 0.045). Regarding the presence of unfilled areas, a statistically significant difference between the groups was observed (p 0.001), especially since no unfilled areas were found at all in the samples of the group using the bonding agent. Regarding the amount of air bubbles trapped in the sealant, no statistically significant difference was observed between the two groups (p = 0.829).
Conclusion: Under these in vitro conditions, sealant procedures using an additional bonding agent applied beforehand significantly improved fissure infiltration and microleakage prevention significantly.
Schlagwörter: sealant, bonding agent, adhesive, primer, microleakage, unfilled area, pit and fissures
Purpose: To investigate polyalkenoate reaction rates in conventional glass-ionomer cement (GIC) and resin-modified glass ionomer (RMGI) restorative materials using infrared spectroscopy.
Materials and Methods: Nine conventional GIC and six RMGI restorative materials were prepared according to manufacturer's directions and placed on a FTIR (Fourier transform infrared spectroscopy) diamond ATR (attenuated total reflectance) surface. FTIR spectra (700 to 1800 cm-1) were obtained each minute for 3 h. VLC specimens were light polymerized after 1 min; at 5 min, all samples were covered with gauze saturated with deionized water. Polyalkenoate reaction was determined by measuring area growth (Å/cm-1) between 1375 and 1500 cm-1. Mean peak areas were determined at 5, 15, 30, 90, and 180 min and compared using ANOVA (p = 0.05)
Results: For all RMGI materials, VLC polymerization inhibited the polyalkenoate reaction rate. Compared to conventional GIC, RMGI materials demonstrated less polyalkenoate reaction. Compared to dark curing, RMGI light polymerization significantly inhibited the polyalkenoate reaction rate.
Conclusions: The addition of resin components to glass-ionomer products significantly retards and impedes the polyalkenoate reaction. The polyalkenoate reaction rate of RMGI products was significantly lower than that of self-curing GIC restorative materials. Furthermore, light activation of RMGI products further retards the polyalkenoate rate. When clinicians require the therapeutic benefit of a polyalkenoate product, perhaps a conventional GIC restorative product should be the first material of choice.
Schlagwörter: polyalkenoate, polyalkenoate reaction, resin modified glass ionomer, glass-ionomer cement
Purpose: This study evaluated the spatial and functional roughness parameters on air-abraded zirconia as a function of particle type and deposition pressure.
Materials and Methods: Polished zirconia blocks (Cercon, Degussa/Dentsply) (N=30) with dimensions of 5 × 4 × 4 mm3 were air abraded according to 2 factors: a) particle type - 30-μm silica-coated alumina (CoJet) or alumina particles (45 μm); b) deposition pressure (1.5, 2.5 and 4.5 bar). Roughness parameters (Sdr, Vi, Sci and Svi) were measured in an optical profilometer (Wyko NT 1100) at the center of the air-abraded area (301.3 × 229.2 μm). Two measurements were made for each parameter from each surface. The means of each group were analyzed by 2-way ANOVA followed by Tukey's adjustment test and Student's t-test (alpha = 0.05).
Results: Both the particle type (p 0.05) and deposition pressure (p 0.05) significantly affected the roughness parameters. Interaction terms were significant except for Sci and Svi. With the increase in pressure from 1.5 to 4.5 bar, Sdr (CoJet 1.5: 15.7 ± 0.2; CoJet 4.5: 26.6 ± 0.2; alumina 1.5: 14.7 ± 0.2; alumina 4.5: 24.4 ± 0.2) and Vi (CoJet 1.5: 0.66 ± 0.01; CoJet 4.5: 1.37 ± 0.07; alumina 1.5: 0.62 ± 0.02; alumina 4.5: 1.19 ± 0.02) parameters showed a significant increase with both alumina and CoJet particles. Mean Sci values (CoJet 1.5: 1.62 ± 0.01, CoJet 4.5: 1.49 ± 0.02; alumina 1.5: 1.6 ± 0.03; alumina 4.5: 1.42 ± 0.04) and SVi (CoJet 1.5: 0.98 ± 0.01, CoJet 4.5: 0.112 ± 0.01; alumina 1.5: 0.98 ± 0.01, alumina 4.5: 0.12 ± 0.01) decreased significantly (p 0.05) with the increase in pressure from 1.5 to 4.5 bar. The pressure increase from 2.5 to 4.5 bar did not cause any significant difference (p > 0.05) in these parameters for either particle type.
Conclusion: Considering roughness parameters for micromechanical retention and parameters for adsorption mechanisms of adhesion, zirconia surfaces presented better morphological features when air abraded with silica-coated alumina than alumina particles at pressures higher than 1.5 bar. Particle deposition at 2.5 bar may be preferable to 4.5 bar pressure for avoiding possible deposition-related damage on zirconia, as there were no significant differences for the functional parameters.
Schlagwörter: adhesion, ceramic, prosthodontics, surface treatment, roughness, zirconia
Purpose: To evaluate the 3-year clinical durability of the flowable bulk-fill resin composite SDR in Class I and Class II restorations.
Materials and Methods: Thirty-eight pairs of Class I and 62 pairs of Class II restorations were placed in 44 male and 42 female patients (mean age 52.4 years). Each patient received at least two extended Class I or Class II restorations that were as similar as possible. In all cavities, a one-step self-etching adhesive (XenoV+) was applied. One of the cavities of each pair was randomly assigned to receive the flowable bulk-fill resin composite SDR in increments up to 4 mm as needed to fill the cavity 2 mm short of the occlusal cavosurface. The occlusal part was completed with an ormocer-based nanohybrid resin composite (Ceram X mono+). In the other cavity, only the resin composite CeramX mono+ was placed in 2 mm increments. The restorations were evaluated using slightly modified USPHS criteria at baseline and then annually for 3 years. Caries risk and bruxing habits of the participants were estimated.
Results: No post-operative sensitivity was reported. At the 3-year follow-up, 196 restorations - 74 Class I and 122 Class II - were evaluated. Seven restorations failed (3.6%), 4 SDR-CeramX mono+ and 3 CeramX mono+ only restorations, all of which were Class II. The main reason for failure was tooth fracture, followed by resin composite fracture. The annual failure rate (AFR) for all restorations (Class I and II) was 1.2% for the bulkfilled restorations and 1.0% for the resin composite-only restorations (p > 0.05). For the Class II restorations, the AFR was 2.2% and 1.6%, respectively.
Conclusion: The 4-mm bulk-fill technique showed good clinical effectiveness during the 3-year follow-up.
Schlagwörter: bulk fill, dental restorations, clinical, composite resin, nano, posterior, self-etching adhesive