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The Mechanisms and Application Value of Postbiotics in 

Caries Prevention and Management
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Abstract: Dental caries, one of the most prevalent diseases globally, affects individuals throughout their lifetimes. Re-
cently, researchers have increasingly focused on postbiotics for caries prevention. Postbiotics, comprising inanimate mi-
croorganisms and/or their components, confer health benefits to the host. Growing evidence suggests postbiotics’ 
potential anticaries effects. Specifically, numerous postbiotics have demonstrated the ability to inhibit dental caries 
onset and progression by modulating oral flora microecology and reducing human caries susceptibility. This review elab-
orates on the current research regarding postbiotics’ anticaries effects, highlights some studies’ shortcomings, and inno-
vatively proposes that postbiotics could potentially influence tooth development and salivary characteristics through 
epigenetic modifications. Furthermore, it anticipates postbiotics’ future application in personalised caries treatment, 
given their multifaceted anticaries potential.
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Dental caries is a prevalent disease globally, affecting indi-
viduals of any age, gender, ethnicity, geographical loca-

tion, and profession.137 Additionally, it is also a multifactorial 
disease that is primarily associated with environmental risk 
factors and host susceptibility, including biofilms, cariogenic 
diets, dental structure, and immunity and salivary characteris-
tics of the host.110 Recently, there has been a heightened em-
phasis on caries prevention through the regulation of the host 
susceptibility and oral environment. The latter involves selec-
tively inhibiting oral pathogens instead of eradicating entire 
microbial communities, and/or targeting the virulence factors 
of pathogens, aiming to preserve oral microecological balance. 
Consequently, researchers have initially concentrated on pro-
biotics.85 Probiotics, which are live microorganisms, can en-
hance host health when consumed in adequate amounts.44 
Their anticaries effects are mediated through various mechan-
isms, including competition, co-aggregation, antimicrobial 

substance production, immune system modulation, and bio-
film-specific gene expression downregulation.23,92,101,129 None-
theless, the use of probiotics is constrained by factors such as 
vitality, storage stability, tolerance, conditions of action, strain-
specific mechanisms, and safety concerns, including the pro-
duction of virulence factors, risk of opportunistic infections 
and bacteraemia in immunocompromised individuals, as well 
as antibiotic resistance transfer.81,82,90,118 Consequently, re-
searchers are actively seeking natural therapeutic alternatives 
that offer greater efficacy and reduced toxicity. Considering 
that postbiotics, primarily derived from probiotics, exhibit sig-
nificant benefits in these areas,8,53 research into their anticar-
ies effects has consequently ensued. This paper will summarise 
and analyse in detail the mechanisms and application value of 
postbiotics in caries prevention and management, while fore-
casting promising directions for future research and potential 
applications in precision medicine.

CARIOLOGY
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METHODOLOGY

The Latest Concept of Postbiotics
Prior to the publication of the consensus statement by the In-
ternational Scientific Association of Probiotics and Prebiotics 
(ISAPP) on the definition and scope of postbiotics, the term 
lacked a consistent definition and was known by several syn-
onyms, including paraprobiotics, non-viable probiotics, heat-
killed probiotics, bacterial lysates, and tyndallised probiotics. 
The most recent consensus statement by ISAPP precisely defines 
postbiotics as ‘preparation of inanimate microorganisms and/or 
their components that confers a health benefit on the host’.105 

Specifically, postbiotics comprise intentionally inactivated mi-
crobial cells, which may or may not include metabolites (eg, se-
cretory proteins, bacteriocins, organic acids, biosurfactants) or 
cellular components (eg, peptidoglycans, lipoteichoic acids, sur-
face proteins). It should be noted that postbiotics are mixtures. 
Although basic purified components of microorganisms can be 
found in postbiotic formulations, they do not qualify as postbiot-
ics because purified molecules should be identified using estab-
lished, unambiguous chemical nomenclature. Furthermore, 
characterising the microorganism or microbiota, including fully 
annotated genome sequences, is essential before the prepar-
ation of postbiotics.

Postbiotics offer advantages over probiotics, including a 
longer shelf life, clearly defined safe dosage parameters, en-
hanced stability, and easier transportation. Studies have dem-
onstrated that the antimicrobial effects of probiotics are partly 
due to the substances they produce. Furthermore, in some in-
stances, the mechanism of action of postbiotics mirrors that of 
probiotics.62 Consequently, postbiotics may serve as a safer 
alternative to probiotics and have become a focal point in con-
temporary anticaries research.

Specific Mechanisms of Caries Prevention and 
Management by Postbiotics
Postbiotics, containing various active substances, can mediate 
anticaries effects via multiple mechanisms. The interactions 
among these mechanisms can result in synergistic effects or 
antagonistic effects, depending on their correlation degree.

Regulation of the Oral Microbiota Ecosystem
Influence on acid production and acid resistance of 
cariogenic bacteria
It is widely recognised that acid production and acid resistance 
are the main virulence factors of cariogenic bacteria (Fig 1). Sev-
eral postbiotics derived from probiotics have been shown to sup-
press the occurrence and progression of dental caries by influ-
encing the expression of virulence genes associated with acid 
production and resistance in cariogenic bacteria (Table 1). For 
instance, postbiotics from Lactobacillus paracasei ET-22 (ET-
22-HK and ET-22-S), have been found to significantly downregu-
late the expression levels of brpA, LDH, relA, recA, and ffh 
genes.145 Novel iminosugar compounds from Lactobacillus para-
gasseri MJM60645, the supernatant of Lactobacillus kefiranofa-
ciens DD2, and the postbiotic mediator (PM) of Enterobacter co-
lacae PS-74 significantly downregulated brpA gene, thereby 
inhibiting the acid resistance of cariogenic bacteria.34,50,93 Super-
natants from Lactobacillus species are capable of affecting the 
expression of atpD and aguD genes, with effects varying depend-
ing on the specific Lactobacillus strain and the forms of Strepto-
coccus mutans (S. mutans) (either planktonic or biofilm).136

Postbiotic components can also disrupt the pH balance in 
cariogenic bacteria by influencing enzyme activity. Specifically, 
palmitic, oleic, and linoleic acids markedly inhibit the F-ATPase 
activity of S. mutans. Notably, oleic and linoleic acids are more 
effective than NaF at inhibiting the F-ATPase activity.38,79

Fig 1  The direct effects  
of postbiotics in caries pre-
vention and management. 
Postbiotics can directly 
exert an anticaries effect 
by regulating the oral mi-
crobiota ecosystem. This 
regulation includes:  
(a) influencing the acid 
production and acid resis-
tance of cariogenic bac-
teria; (b) affecting 
structural stability and 
metabolic activity of cario-
genic bacteria; (c) impact-
ing biofilm development 
and formation; and  
(d) modulating quorum 
sensing.
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Influence on the structural stability and metabolic activity of 
cariogenic bacteria
Numerous postbiotic compounds have been shown to decrease 
biofilm biomass by undermining the structural integrity and 
metabolic functions of cariogenic bacteria. PMs derived from L. 
rhamnosus GG and L. reuteri were observed to significantly di-
minish the metabolic activity of S. mutans.6 The supernatant 
from L. reuteri AN417, a probiotic strain recently characterised, 
demonstrated a reduction in S. mutans growth rate, intracellu-
lar adenosine triphosphate (ATP) levels, cell viability, and time 
required for killing.144 The cell-free, pH-neutralised superna-
tants from L. rhamnosus Lr32 and HN001, and L. acidophilus LA5 
and NCFM, were found to alter the expression profiles (cdtB, 
ltxA, and katA) of Aggregatibacter actinomycetemcomitans (Aa), 
resulting in a reduction of viable Aa counts, biofilm biomass, 
and impacted preformed Aa biofilms in a strain-specific man-
ner.49 Concentrated supernatant from Streptococcus dentisani 
was found to inhibit the growth of S. mutans, a process believed 
to be mediated by bacteriocins present in the supernatant. This 
conclusion was drawn because the inhibitory molecules were 
identified as peptidic, small (<3 KDa), and capable of creating 
holes in the membranes of sensitive bacteria.76 Bacteriocins 
derived from Streptococcus lactis have demonstrated signifi-
cant antimicrobial activity against Gram-positive bacteria 
through their interaction with the cell membranes, leading to 
the formation of membrane pores.61 The supernatants of W. ci-
baria CMU and L. paracasei OSU-PECh-3B are enriched with N-
acetylmuramidase and hydrolase-amidase, respectively. N-
acetylmuramidase is an antimicrobial protein that cleaves the 
1,4-linkage between N-acetylmuramic acid and N-acetylglucos-
amine in the peptidoglycan found in the bacterial cell wall. Hy-
drolase-amidase, structurally related to other amidohydrolases 
such as N-acetylmuramoyl-L-alanine amidase, is involved in the 

degradation of peptidoglycan and hydrolysis of the amide bond 
between N-acetylmuramic acid and L-amino acids of the bac-
terial cell wall.28,70,125 Reuterin, secreted by Lactobacillus re-
uteri, can interfere with bacterial DNA replication by inhibiting 
the activity of ribonucleic acid reductase, essential for DNA syn-
thesis.45 A 3-month clinical study demonstrated that bacterio-
cin from Streptococcus salivarius M18 antagonises cariogenic 
bacteria.24 L-arginine in certain postbiotics may disrupt bacter-
ial DNA replication by upregulating the expression of the spxB 
gene (which encodes pyruvate oxidase, primarily responsible 
for H2O2 production59 in Streptococcus gordonii, and by redu-
cing the interspecies competitiveness of S. mutans, which lacks 
hydrogen peroxide scavenging enzymes.41,42

Fatty acids, which typically comprise a significant portion of 
postbiotic components, disrupt the structural and metabolic ac-
tivities of cariogenic bacteria and inhibit sucrose-induced demin-
eralisation.29 However, it is crucial to note that certain fatty acids 
may exhibit pathogenicity.7 Consequently, it is necessary to 
screen for harmful components and find methods to eliminate 
them during postbiotic preparation. Although some postbiotics 
contain lactic acid, its anticaries role remains highly controver-
sial. This controversy primarily stems from the prevailing view 
that lactic acid contributes to the pathogenesis of caries. How-
ever, numerous studies have highlighted the antimicrobial ef-
fects of lactic acid. Additionally, the role of lactic lactobacilli, 
natural residents of the oral microbiota, in cariogenesis has not 
been conclusively clinically demonstrated.90 In the authors’ opin-
ion, controlling acidity is crucial for the anticaries effects of lactic 
acid and other organic acids. Specifically, postbiotics should 
maintain an optimal acidity level to preserve the presence and 
effectiveness of organic acids. Additionally, it is essential to regu-
late the pH to prevent it from becoming too low, avoiding enamel 
demineralisation and shifting the bacterial flora towards acid 

Table 1  Effect of postbiotic-regulated genes on acid production and acid resistance in cariogenic bacteria

Gene name Description

brpA The gene encodes biofilm regulatory protein A, which is implicated in acid and oxidative stress tolerance and biofilm formation 
in S. mutans138,139

LDH The gene encodes lactate dehydrogenase, which is a crucial enzyme in the glycolytic pathway of organisms25

relA The gene encodes guanosine tetra (penta)-phosphate synthetase, which play a pivotal role in acid resistance in S. mutans75

recA The gene encodes recombinase A, which is believed to activate DNA repair mechanisms in S. mutans15

ffh The gene encodes a signal recognition particle subunit, which plays a crucial role in maintaining the composition of functional 
membrane proteins that contribute to acid resistance in S. mutans37

atpD The gene encodes F-ATPase, which is crucial for modulating the acid adaptive response of S. mutans86

aguD The gene encodes the guanidine deiminase system, which is implicated in the acid resistance of S. mutans9
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increased cell densities in biofilms facilitate horizontal gene 
transfer, enhancing biofilm resistance or modifying the viru-
lence spectrum.26 Biofilm formation is a complex process in-
volving the formation of an initial film, bacterial adhesion to 
the surface and the release of extracellular polymers (EPS), 
bacterial colonisation, and biofilm maturation. Considering the 
significant role of biofilms in the development of caries, nu-
merous studies have concentrated on the influence of postbiot-
ics on biofilm development and formation (Fig 2).

resistance. Moreover, effective pH values for postbiotics may vary 
depending on the source of the probiotics, necessitating addi-
tional experimental and clinical data to explore and substantiate.

Influence on biofilm development and formation
Biofilm is a highly dynamic, structured community of microbial 
cells that, once formed, acts as a refuge for bacteria, signifi-
cantly enhancing their resistance to antimicrobial agents and 
their ability to evade the host’s immune system. In addition, 

Fig 2  The mechanisms by which postbiotics  
affect acid production, acid tolerance, structural 
integrity and metabolic activity of S. mutans.  
(a) Postbiotics downregulate the expression of 
genes including brpA, ffh, relA, aguD and atpD, 
consequently reducing acid tolerance. Addition-
ally, the downregulation of recA and LDH impairs 
DNA repair mechanisms and the glycolytic path-
way, respectively. (b) In postbiotics, enzymes  
including N-acetylmuramidase and hydrolase-
amidase degrade peptidoglycan, thereby de-
stroying the cell wall. Simultaneously, bacteriocins 
disrupt the membrane by forming pores.

Fig 3  Mechanisms by which postbiotics influ-
ence bacterial adhesion, biofilm formation and 
quorum sensing in S. mutans. (a) Postbiotics 
downregulate the expression of genes including 
gtf cluster, gbp cluster and ftf, thereby inhibiting 
bacterial adhesion and biofilm formation. More-
over, the downregulation of spaP inhibits inter-
species adhesion. Postbiotics also reduce the 
activities of GTF and GBP, which inhibits the 
binding of EPS to GBP. (b) Postbiotics inhibit the 
expression of comA, comDE and comX, thereby 
interfering with the ComCDE and ComRSX sys-
tems. This interference impedes the regulation  
of target gene expression and ultimately blocks 
intraspecies communication. Postbiotics also 
suppress AI-2, thereby blocking interspecies 
communication. Furthermore, postbiotics inhibit 
the expression of the vicR gene expression, 
thereby interfering with the VicRKX system.  
This interference affects the growth, adhesion, 
biofilm formation, and genetic competence of  
S. mutans.
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Lipoteichoic acid: Lipoteichoic acid, derived from L. plan-
tarum, has been shown to interfere with the catabolism of su-
crose in S. mutans, thereby inhibiting the production of extra-
cellular polysaccharides. During this process, lipoteichoic acid 
likely inhibits EPS production by reducing the activity of gluco-
syltransferase enzyme (GTF) and glucan-binding-protein (GBP), 
without affecting their expression. Additionally, the study re-
vealed that the D-alanine components within lipoteichoic acid 
are crucial for its functionality. Consequently, variations in 
D-alanine content and repeat unit length in the molecular 
structure of LTA might account for the functional disparities of 
LTA derived from various sources. The functional mechanism of 
D-alanine is believed to be linked to its positive charge, as nu-
merous studies have indicated that such a charge may encap-
sulate cariogenic bacteria via electrostatic interactions, or pen-
etrate cells to bind to DNA, thereby regulating gene expression 
related to biofilm formation.2

Polysaccharide: A water-soluble extracellular polysaccha-
ride, derived from L. reuteri BM53-1 was observed to reduce 
gtfD expression, decrease dextran viscosity, and alter dextran 
properties, thereby inhibiting the production of viscous 

-glucans by S. mutans.87 However, in vitro studies indicate 
that gtfB and gtfC are essential for S. mutans cell attachment 
and co-aggregation, whereas gtfD is not necessary, suggesting 
that the polysaccharide may have only a minor role in colony 
regulation.121

Biosurfactant (BSF): Biosurfactants, complex secondary 
metabolites with amphiphilic structures, exhibit emulsifying 
properties that may aid in dispersing preformed biofilms or 
preventing biofilm formation.18 Moreover, biosurfactants mod-
ulate biofilm virulence gene expression; for example, biosurfac-
tants from L. acidophilus and L. fermentum were shown to de-
crease the expression of the gtfB and gtfC genes.121,122 Given 
that the antimicrobial effects of biosurfactants significantly 
depend on their type and the target bacteria, selecting an ap-
propriate study population is crucial to observe the expected 
effects.133 Additionally, while biosurfactants can be secreted 
into the culture medium or attached to the bacterial cell wall, 
most existing literature focuses on cell-bound biosurfactants, 
with scant data on those in the culture medium.18,35,103,108,113,121 
In summary, biosurfactant treatment led to changes in various 
bacterial cell properties, including surface characteristics and 
gene expression. In natural systems, the complexity is signifi-
cantly higher, necessitating the consideration of numerous ad-
ditional factors.32,78

Cell-free supernatant (CFS): CFSs contain compounds of 
varying molecular weights. Extensive research shows that su-
pernatants from diverse Lactobacillus species can suppress 
genes associated with biofilm formation, such as the gtf cluster 
(encoding glucosyltransferase), gbp cluster (encoding glucose 
binding protein), ftf (encoding fructosyltransferase), and spaP 
(encoding streptococcal protein antigen P).30 However, the ex-
tent of these effects depends on the specific Lactobacillus spe-
cies. For example, supernatant from L. paracasei ET-22 sup-
pressed the expression of the gbp cluster, gtfB, and spaP genes 
in S. mutans145; L. kefiranofaciens DD2 supernatant reduced the 
expression of ftf, gbpB, and spaP50; L. plantarum 108 superna-
tant inhibited and disrupted both mono-species and mixed-

species biofilms of S. mutans and C. albicans. During this pro-
cess, the supernatant markedly decreased the expression of gtf 
cluster in S. mutans single-species biofilms compared to 
mixed-species biofilms.117 Additionally, L. plantarum EIR/IF-1, 
L. curvatus EIR/DG-1, and EIR/BG-2 PMs downregulated gtfC 
expression.90 PMs from L. rhamnosus GG and L. reuteri signifi-
cantly decreased gtfB expression and reduced biofilm poly-
meric matrix production.6 Similarly, PM from Enterobacter clo-
acae PS-74 markedly lowered the expression of gtfB and gtfC 
genes.93 Enterococcus faecalis M157 whey inhibited the expres-
sion of gtf cluster in a dose-dependent manner, in contrast to 
unfermented whey.115 Moreover, two novel iminosugar com-
pounds in the CFS of L. paragasseri MJM60645 significantly 
decreased the expression of the gtf cluster, gbpB, spaP, and ftf 
genes.34 Metabolites from L. fermentum TcUESC38 demon-
strated anti-adhesion and bactericidal effects against S. mu-
tans planktonic cells, without examining associated gene ex-
pression changes.102 Although many studies underscore the 
notable anti-biofilm properties of CFSs, however, some studies 
suggest that supernatants from specific probiotic strains are 
either less effective or ineffective against multispecies bio-
films.16 This variation could be attributed to the source of bac-
terial strains, inactivation methods, preparation techniques, 
and the composition of multispecies biofilms.

Heat-killed probiotic: Heat-killed probiotics are postbiotics 
that are prepared by inactivating microorganisms with heat 
treatments. Numerous studies demonstrate their significant 
anti-biofilm activity, with varying effects depending on the spe-
cific heat treatment.91 Research indicates that heat-killed Lac-
tobacillus sp. interfere with S. mutans adhesion to saliva-
coated hydroxyapatite through competition, repulsion, and 
substitution. This interference may occur as they occupy spe-
cific salivary receptors, essential for cariogenic bacteria adhe-
sion.17,123 Additionally, heat-killed Lactobacillus sp. has been 
effective in increasing the presence of beneficial microbial 
strains in saliva, while simultaneously reducing the clonal 
growth of cariogenic strains, thus demonstrating a beneficial 
direction in flora regulation. However, this research did not 
analyse and verify the mechanism of action.71 Heat-killed L. 
paracasei ET-22 was observed to downregulate the expression 
levels of the spaP, gbp cluster, and gtfB genes. In this study, the 
authors suggested that zidovudine within the ET-22-HK signa-
ture nucleotide might serve as an active agent in inhibiting the 
development of S. mutans biofilms; however, the regulatory 
pathway remains unclear.99,145

Organic acid: In vitro studies demonstrate that l-arginine 
prevents S. mutans from adhering to salivary-coated surfaces 
by inhibiting the expression of gtfB and enhancing the expres-
sion of the arcA gene (which encodes arginine deiminase) in 
S. gordonii, thereby enriching the alkaliphilic microbial com-
munity. However, studies also reveal that although arginine 
impacts the production/composition of glucan, its influence on 
the gene expression of gtf cluster is minimal. This could be at-
tributed to the timing of gene expression analysis or arginine 
facilitating the solubilisation of proteins encoded by gtf cluster 
via another pathway, such as modulating protein-protein inter-
actions.5,42,46,48 Fatty acids, including linoleic and oleic acids, 
also diminish the production of extracellular polysaccharides 
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in S. mutans. However, this reduction in EPS formation is not 
attributed to the inhibition of GTF activity but rather to the 
suppression of S. mutans biofilm cellular F-ATPase activity.94 

This effect arises because the enzymes secreted by bacterial 
cells are typically linked to ΔpH across the cell membrane, and 
linoleic and oleic acids may disrupt biofilm cell F-ATPase activ-
ity, altering ΔpH and subsequently inhibiting GTF secretion.79 

Additionally, some studies indicate that fatty acids may pre-
vent bacterial adhesion to enamel by encapsulating individual 
bacteria in micelles.29

Peptide nisin, an antibiotic peptide, is produced by Lacto-
coccus lactis.19 Experimental evidence demonstrates that it in-
hibits the synthesis of glucan biofilm by S. mutans.142 Cyclo(L-
leucyl-L-prolyl), secreted by Bacillus amyloliquefaciens, 
effectively inhibits bacterial adhesion among bacteria and to 
hosts. This effect is achieved through the reduction of cell sur-
face hydrophobicity and the downregulation of gtfC and gbpB 
genes.33 A clinical study has found that bacteriocin from S. sal-
ivarius M18 antagonise cariogenic bacteria. Furthermore, the 
dextransucrase and urease it produces facilitate glucan decom-
position (which assists in plaque dissolution) and urea hydro-
lysis (which elevates saliva pH), respectively, thereby prevent-
ing the development of cariogenic biofilms.24

Influence on quorum sensing
Quorum sensing (QS) is a bacterial communication mechanism 
that regulates several processes including bacterial motility, 
antibiotic biosynthesis, biofilm formation, plasmid coupling, 
and the production of virulence factors. This mechanism en-
ables bacteria to sense and adapt to environmental changes by 
modifying gene expression, which offers protection from envi-
ronmental challenges, enhances defence against host immune 
systems, facilitates competition with other bacteria, and sup-
ports physiological activities related to virulence.68 The mech-
anism of QS operates on the principle of production, detection, 
and response to extracellular signalling molecules, known as 
autoinducers (AIs). Each bacterial species produces and re-
sponds to specific autoinducers. As an illustration, Gram-nega-
tive bacteria utilise acylated homoserine lactones (AHLs), while 
Gram-positive bacteria employ autoinducing peptides (AIPs) as 

specific autoinducers.95 Furthermore, AI-2, known as a ‘univer-
sal’ signal produced through LuxS-mediated methyl meta-
bolism, is not species-specific, thereby facilitating interspecies 
communication and often playing a significant role in control-
ling virulence.140 The Com system, which includes ComCDE and 
ComRSX, serves as the predominant community-sensing mech-
anism for intraspecies communication in S. mutans.40,111 De-
creased gene expression in this system compromises S. mutans 
communication, resulting in diminished acid tolerance, acid 
synthesis, genetic transformation, bacteriocin production, and 
biofilm formation capabilities.63,66,67,120 The VicRKX system 
regulates oxidative stress tolerance in cariogenic bacteria, regu-
lating genes associated with virulence, including gtf cluster, ftf, 
and gbpB. This regulatory process influences S. mutans growth, 
sucrose-dependent adherence, biofilm formation, and genetic 
competence.50,60,111 Disruption of the QS systems hampers bac-
terial communication, diminishing virulence inhibition among 
bacteria, thus impairing their survival and reproduction.100

Recent studies have increasingly demonstrated that postbi-
otics are capable of reducing bacterial populations within bio-
films and diminishing the production of virulence factors by 
inhibiting QS. For instance, lactic acid and phenyl lactic acid, 
produced by probiotics, have been found to inhibit homoser-
ine lactone (HSL) production and the ComDE system, respect-
ively.112,145 PMs from three probiotic strains have been ob-
served to suppress the expression of comA and comX genes in 
S. mutans at non-lethal concentrations.90 Biosurfactants iso-
lated from Pediococcus acidilactici and Lactobacillus plantarum 
have been shown to significantly reduce Autoinducer-2 (AI-2) 
synthesis in a dose-dependent manner, thereby interfering 
with both intraspecies and interspecies communication.143 Su-
pernatants from Enterobacter cloacae PS-74 and L. kefiranofa-
ciens DD2 were found to decrease the expression of QS signal 
transduction-regulated genes, including comDE and vicR, in 
S. mutans.50,93 Similarly, patent records indicate that the 
l-leucyl-l-prolyl molecular ring from Bacillus amyloliquefaciens 
produces an analogous effect.33 Furthermore, another study 
revealed variations in the effects of supernatants from four Lac-
tobacillus species on the expression of comCD and vicKR genes 
in both planktonic and biofilm forms of S. mutans.136

Fig 4  The indirect effects of postbiotics in  
caries prevention and management. Postbiotics 
can indirectly achieve an anticaries effect by 
modulating human susceptibility to dental  
caries. This modulation includes: (a) modulating 
oral immunity; (b) influencing the quality and 
quantity of saliva; (c) influencing tooth develop-
ment and calcification processes; (d) influencing 
tooth demineralisation and remineralisation.

(d) Elevate salivary volume & pH value

postbiotics

(a) Facilitate early caries remineralization

(c) Promote tooth development &  

prevent enamel hypomineralization

(b) Elevate salivary lgA level

SlgA
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The ability of postbiotics to modulate cariogenic bacterial 
group sensing holds significance because inhibiting group 
sensing represents a potential strategy against drug-resistant 
pathogens, yet the development and study of such drugs are 
currently limited. Furthermore, the accessibility and afford-
ability of postbiotics, derived from a wide range of sources, 
herald a promising new phase in combating drug resistance.4

Modulation of Human Susceptibility to Dental Caries

Modulation of oral immunity
During the formation and development of cariogenic biofilm, 
the body fights infection and suppresses the growth, multipli-
cation, and virulence of cariogenic bacteria through innate and 
adaptive immune responses (Figs 3 and 4). However, if the 
body’s immunity weakens due to internal or external factors 
and fails to sufficiently restrict the invasion of cariogenic bac-
teria, the risk of acute and rampant caries increases. Conse-
quently, bolstering the immune response in immunocompro-
mised individuals can help reduce their caries incidence.

Postbiotics modulate oral immunity through the promotion 
of oral immune factor production and secretion. UV-inactivated 
Lactobacillus rhamnosus 1505, acting as an immune adjuvant 
akin to bacterium-like particles (BLP), potentially enhances the 
production of specific systemic SIgA. This effect is achieved by 
stimulating human dendritic cells, differentiated from peripheral 
blood mononuclear cells, to secrete IL-6 and IL-10.22,106,107 A 
clinical trial demonstrated that oral administration of heat-killed 
probiotic tablets significantly elevated salivary IgA levels, likely 
through the upregulation of IL-10 and TGF-Beta.73

While postbiotics may reduce bacterial colonisation in the 
oral cavity through immune activation, they could also result in 
excessive immunisation. Nonetheless, evidence indicates that 
peptidoglycan from probiotics or commensal bacteria can trig-

ger immunostimulatory factor production without causing 
harmful inflammation.107 This phenomenon could be attrib-
uted to the dynamic interplay among various components or 
the possibility that increasing a component’s dosage enhances 
its immunostimulatory effect; concurrently, there is an eleva-
tion in anti-inflammatory factor production.80,119 Nevertheless, 
it cannot be guaranteed that postbiotics will prevent harmful 
inflammation, as they comprise various substances with un-
verified effectiveness in mitigating excessive inflammation or 
boosting immune response adequately. Consequently, it is im-
perative for researchers to meticulously analyse the dose-re-
sponse relationship of components in their studies.

Effects on the quality and quantity of saliva
A clinical trial demonstrated that urease, produced by S. sali-
varius M18, catalyses the hydrolysis of urea, thereby increasing 
saliva pH.24 Citrulline and arginine, constituents of specific 
postbiotics, mediate the PPAD-citrullination pathway132,145 and 
the arginine deiminase system (ADS) reaction,7,46 respectively. 
Arginine, notably, neutralises glycolysis acids through ADS ac-
tivity, thus maintaining biofilm pH balance, and additionally 
interferes with EPS matrix formation, increasing in situ pH levels 
at the biofilm-sHA interface.36,42,141 Furthermore, postbiotics 
potentially regulate genes associated with the synthesis and se-
cretion in salivary glands. Research suggests that postbiotics 
may regulate epigenetic methylation modifications,20 with 
methylation activation being beneficial for the suppression of 
Sjögren’s syndrome,58 potentially involving mechanisms linked 
to the activation of the IFN pathway.64 The CFTR (cystic fibrosis 
transmembrane conductance regulator) plays a crucial role in 
the exocrine secretion in salivary glands, with gene methylation 
and demethylation potentially regulating the CFTR gene in a 
tissue-specific manner at various stages of human development, 
influencing the development and function of salivary glands.114

Table 2  The relationship of the aforementioned genes to tooth development and calcification

Gene name Description

ACAT2 The gene encodes acetyl-CoA acetyltransferase 2 and may be associated with erosive tooth wear3

LTBP3 The gene is associated with human oligodontia and amelogenesis imperfecta47,88

Pbx1b The gene is expressed in the dental lamina during the early stages of odontogenesis109

NFκBIB The gene encodes an inhibitor of NFκB expression that is associated with tooth number, shape, and eruption27,89

PRKCD The gene encodes multifunctional enzymes that are associated with ameloblast differentiation and BMP-4-induced 
osteoblastic differentiation96,131

HEY1 The gene is associated not only with the differentiation of tooth-forming cells, calcification of tooth hard tissues, apical 
morphology and root generation, but also with the induced differentiation of pulp stem cells into dentin-forming cells after 
tooth eruption14,21

BID The gene encodes apoptosis-related proteins77

CACNA1A The gene is associated with dental epithelial stem cell activity, proliferation, differentiation and enamel formation39,51,116,146
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Table 3  Studies on the anticaries effects of postbiotics

Postbiotics or its components Microorganisms Effects References

Cell-free supernatant (CFS) Lactobacillus fermentum 20.4,
Lactobacillus paracasei 11.6
Lactobacillus paracasei 20.3
Lactobacillus paracasei 25.4

The activity of S. mutans was inhibited, and biofilm formation 
was significantly reduced.

104

Heat-killed probiotic and cell-free 
supernatant

Lactobacillus rhamnosus ATCC 53103 and 
Lactobacillus paracasei B21060

The heat-killed probiotics inhibit S. mutans biofilm formation 
by competition and displacement, with effects comparable to 
those of live probiotics.
The CFCSs from two Lactobacillus strains, especially the 
undiluted Lactobacillus paracasei B21060, reduced S. mutans 
and S. oralis biofilm formation, which was associated with the 
production and release of antimicrobial compounds (eg, 
hydrogen peroxide, bacteriocins, and biosurfactants).

17

Spent culture suspension (SCS) Lactobacillus pentosus 13-1, 13-4 and 
Lactobacillus crispatus BCRC 14618

The SCSs exhibited significant antimicrobial activity, where 
the compound synthesised by Lactobacillus pentosus 13-4 
with potential antimicrobial properties could be lipophilic 
proteins.

72

Cell-free supernatant Lactobacillus paragasseri MJM60645 The novel iminosugar compounds contained in the 
supernatant strongly downregulated the expression levels of 
genes associated with biofilm formation, including gtfB, gtfC, 
gtfD, gbpB, brpA, spaP, ftf, and smu1, without affecting the 
expression of comDE or relA.

34

Postbiotic mediator (PM) Lactiplantibacillus plantarum EIR/IF-1, 
Lactiplantibacillus curvatus EIR/DG-1, 
and Lactiplantibacillus curvatus EIR/BG-2

All PMs decreased cell viability and biofilm formation, with 
the strongest effect (pH-dependent) in PMs of Lactobacillus 
plantarum EIR/IF-1.
Sub-MIC values of PMs downregulated the expression of gtfC, 
comA, and comX, and inhibited the production of the QS 
machinery and virulence factors, potentially attributed to 
organic acids, fatty acids, and vitamins.

90

Cell-free supernatant Lactobacillus kefiranofaciens DD2 Growth and biofilm formation of S. mutans was inhibited by 
downregulation of the expression of ftf, brpA, comDE, vicR, 
gbpB, and spaP genes, which may be related to organic acids, 
novel extracellular polysaccharides.

50

Bacterial lysates (BL) Lactobacillus plantarum and 
Lactobacillus rhamnosus GG

MAPK and NF-κB signalling pathways were inhibited and 
extracellular polysaccharide synthesis-related genes 
(gtf cluster) were downregulated.

55

Chloroform extract of cell-free culture 
supernatant

Bacillus amyloliquefaciens (MMS-50) The glycolytic activity of S. mutans was inhibited by reducing 
cell surface hydrophobicity.
Biofilm formation, glucan synthesis, acid production, c, and 
community sensing were inhibited by suppressing vicR, 
comDE, gtfC, and gbpB gene expression.

33

Cell-free supernatant Lactobacillus casei Shirota, Lactobacillus 
casei LC01, Lactobacillus plantarum 
ST-III, Lactobacillus paracasei Lpc-37, 
and Lactobacillus rhamnosus HN001

Untreated supernatants inhibited S. mutans growth of S. mutans 
and biofilm formation, whereas treated supernatants inhibited 
the growth of S. mutans and biofilm formation only in the case 
of L. casei Shirota and L. rhamnosus HN001.

74

Biosurfactant Lactobacillus reuteri DSM 17938, 
Lactobacillus acidophilus DDS-1, 
Lactobacillus rhamnosus ATCC 53103, 
and Lactobacillus paracasei B21060

Adhesion and biofilm formation on titanium surfaces of 
S.mutans and S. oralis were significantly inhibited in a dose-
dependent manner.

18

Nisin L. lactis subsp. lactis ATCC 11454 Insoluble glucan biofilm synthesis was completely inhibited in 
S. mutans.

142

Spent culture suspension Lactobacillus casei (ATCC 393), 
Lactobacillus reuteri (ATCC 23272), 
Lactobacillus plantarum (ATCC 14917) or 
Lactobacillus salivarius (ATCC 11741)

Expression of genes related to exopolysaccharide production, 
acid tolerance, and quorum sensing (atpD, aguD, gtfBCD, 
sacB, vicKR, and comCD) was downregulated, which is 
associated with organic acids, peroxides, and bacteriocins.

136

Fatty acid Arthrographis kalrae MS acid production was mitigated and water-insoluble 
exopolysaccharide production and biofilm formation were 
inhibited.

1

Postbiotic mediator Enterobacter colacae PS-74 Expression of QS signalling, glucan metabolism, and biofilm-
regulated genes (eg, gtfB, gtfC, comDE, vicR, brpA) was 
downregulated in the S. mutans.

93

Cell-free supernatant Lactococcus lactis Lactobacillus 
paracasei

The N-acetylmuramidase from Lactococcus lactis supernatant 
hydrolyses peptidoglycan and degrades bacterial cell wall.
The hydrolase-amidase from Lactobacillus paracasei 
supernatant degrades peptidoglycan and hydrolyses the 
amide bond between N-acetylcytidylic acid and L-amino acid 
in the bacterial cell wall.

28

Biosurfactant Lactobacillus fermentum The gene expression of gtfB/C was downregulated, and MS 
attachment and biofilm formation were inhibited.

122

Lipoteichoic acid Lactobacillus plantarum The formation of multispecies biofilms on dentin slices was 
inhibited in a dose-dependent manner.
The effect of intracanal medication in removing formed 
multispecies biofilms was enhanced.

54
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Effects on tooth development and calcification processes
Epigenetic mechanisms significantly influence genes associated 
with the mineralisation and development of teeth (Table 2). For 
instance, variations in DNA methylation can lead to notable dis-
parities in tooth number among monozygotic twins with identi-
cal genotypes.126–128 DNA methylation, a fundamental epigen-
etic mechanism, plays a crucial role in tooth development. 
Research has shown that variations in DNA methylation across 
several genes, such as Pbx1b, ACAT2, and LTBP3, are closely 
linked to tooth development and mineralisation.84 A study in-
vestigating the links between sporadic non-syndromic anodon-
tia, hypodontia, and epigenetics revealed that changes in the 
methylation status of certain genes, including NFκBIB, PRKCD, 
HEY1, BID, and CACNA1A, can affect three signalling pathways – 
MARK, Notch, and Wnt/Ca2+ – involved in tooth develop-
ment.134 However, there are many genes associated with non-
syndromic hypodontia that have been found to be independent 

of methylation levels, such as EDA, PAX, MSX and AXN.134 Al-
though unconfirmed, it’s hypothesised that these genes could 
be affected by other epigenetic mechanisms. Another study 
found an association between the methylation status of genes 
involved in tooth development and insufficient enamel miner-
alisation, but failed to establish a clear causal link.84

It has been suggested by researchers that elucidating the 
local triggers of differential methylation in genes associated 
with tooth development and mineralisation could aid in the 
early detection of enamel hypomineralisation. Changes in 
these triggers signify significant preventive possibilities.84 Re-
cent research indicates that microbial metabolites, such as 
short-chain fatty acids, can influence epigenetic modifications, 
altering cell transcription and resulting in host genome repro-
gramming.10,20,52,97 However, studies in this area are limited 
and primarily focus on obesity and immunity. Considering the 
extensive impact of microbial metabolites on systemic DNA 

Table 3  Studies on the anticaries effects of postbiotics (contd.)

Postbiotics or its components Microorganisms Effects References

Postbiotic mediator Lactobacillus rhamnosus GG (LGG) and 
Lactobacillus reuteri (LR)

Metabolic activity, gtfB gene expression, and biofilm 
formation were inhibited in S. mutans.

6

Postbiotic mediator Lactiplantibacillus plantarum EIR/IF-1, 
Lactiplantibacillus curvatus EIR/DG-1, 
and Lactiplantibacillus curvatus EIR/BG-2

The QS and virulence of cariogenic bacteria were inhibited by 
the downregulation of the expression of gtfC, comA and comX.

90

Lactic acid Pediococcus acidilactici M7 Inhibitory effects on QS signalling molecules and certain 
QS-dependent virulence factors in Gram-negative bacteria.

56

Biosurfactant Pediococcus acidilactici and Lactobacillus 
plantarum

AI-2 synthesis was inhibited in a dose-dependent manner. 143

Biosurfactant Lactobacillus acidophilus DSM 20079 S. mutans biofilm formation was inhibited and gtfB/C 
expression was downregulated.

121

Lipoteichoic acid Lactobacillus plantarum KCTC10887BP The activity or function of GTF and GBP is inhibited. 2

Cell-free supernatant Lactobacillus fermentum TcUESC01 S. mutans was killed and its ability to adhere was inhibited. 102

Cell-free supernatant Lactobacillus reuteri AN417 Growth rates, intracellular ATP levels, cell viability, time-to-kill 
and biofilm integrity were significantly inhibited in S. mutans.

144

Cell-free supernatant Lactobacillus plantarum 108 S. mutans and C. albicans single and hybrid biofilm formation 
was inhibited, and gtfBCD gene expression was 
downregulated.

117

Whey Enterococcus faecalis M157 MAPK phosphorylation and NF-κB activation were inhibited.
Secretion of IL-1ꞵ and IL-8 was inhibited.
Expression of the gtfBCD genes was downregulated in the 
S. mutans. 

115

Cell-free supernatant Streptococcus dentisani 7746 and 7747 MS growth was inhibited, which is associated with 
bacteriocins.

76

Cell-free supernatant  Lactobacillus rhamnosus Lr32, 
Lactobacillus rhamnosus HN001, 
Lactobacillus acidophilus LA5, and 
Lactobacillus acidophilus NCFM

The CFSs altered expression profile of Aa, reduced Aa viable 
counts and biofilms biomass and influenced Aa preformed 
biofilms in a strain-specific fashion.

49

Bacteriocin, dextranase and urease Streptococcus salivarius M18 Bacteriocins effectively antagonised acidogenic dental plaque 
inhabitants.
Dextranase and urease counteract plaque formation and 
saliva acidity, respectively.

24

Heat-killed probiotic and secretion Lactobacillus paracasei ET-22 The growth of S. mutans biofilm growth, the synthesis of both 
water-soluble polysaccharide and water-insoluble 
polysaccharide, and the expression levels of virulence genes 
(brpA, LDH, Rela, recA, ffh, spaP, gbpABC, gtfB) were inhibited.

145

Polysaccharide Lactobacillus reuteri BM53-1 The gtfD expression was downregulated. 87

Heat-killed probiotic Lactobacillus salivarius subsp. salicinius 
AP-32 and Lactobacillus paracasei ET-66

Salivary IgA levels were significantly elevated, probably due to 
elevated levels of IL-10 and TGF-Beta.

73
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methylation,134 postbiotics hold potential in regulating enamel 
development and mineralisation. However, research in this do-
main is still in its early stages, limiting the scope of definitive 
conclusions. Given that environmental impact on genetics be-
gins as early as the embryonic or intrauterine stage,65 early pre-
vention of caries, through epigenetic regulation of gene expres-
sion via diet or medication, is paramount. Therefore, the 
prospects for research on postbiotics in this field are promising.

Effects on tooth demineralisation and remineralisation
In the situation of dental caries, the dental pulp will express a 
variety of cytokines to promote the odontogenic differentiation 
of dental pulp derived stem cells (DPSCs) and the development 
of restorative dentin. Some researchers discovered that probi-
otic yoghurt extracts can reduce enamel demineralisation in 
experimental settings.130 However, this study merely docu-
mented the phenomenon without explaining the underlying 
reasons. Bacterial lysates from L. plantarum and L. rhamnosus 
were reported to reduce MAPK phosphorylation and NF- B ac-
tivation, therefore improving the ability for odontogenic dif-
ferentiation in DPSCs.43,55 A clinical investigation found that 
toothpaste containing 1.5% l-arginine and fluoride improved 
the demineralisation/remineralisation equilibrium and outper-
formed fluoride alone.124 Similarly, an experiment demon-
strated that both arginine alone and in combination with NaF 
enhanced tooth remineralisation. The researchers believe the 
mechanism involved may be that Arg uptake by enamel can 
nucleate sub-surface crystal mass.11,12 It has been found that 
LPS significantly promotes the differentiation of DPSCs toward 
dentin cells in a dose-dependent manner, which involves the 
modulation of the biological behaviour of DPSCs by LPS-in-
duced IFN- . Notably, lower concentrations of IFN-  foster DPSC 
proliferation and migration to the damaged site while concur-
rently suppressing odontogenic differentiation; in contrast, 
higher concentrations of IFN-  expedite odontogenic differen-
tiation, which involves inhibiting the NF- B and MAPK signal-
ling pathways.43 However, research has demonstrated that the 
activation of NF- B signalling can facilitate odontogenic dif-
ferentiation of DPSCs in inflamed sites.83,98,135 As a result, the 
processes underpinning tooth remineralisation are highly com-
plex, prompting further research into the involvement of post-
biotics in this setting.

Table 3 presents the outcomes of in vivo and in vitro studies 
undertaken to examine the impact of postbiotics and their 
components on cariogenic factors.

RESULTS

Pathways to Enhancement, Improvement and Application

Current status of research
Numerous in vitro studies have investigated the impact of post-
biotics on factors that contribute to dental caries; however, 
some of them only report results such as biofilm formation in-
hibition and biomass reduction, without delving into the effec-
tive components and underlying molecular mechanisms. 
Meanwhile, in vivo and clinical trials are less common, and 

many of these studies have experimental design flaws such as 
a lack of blinding, the absence of a placebo group, control 
groups made up of untreated subjects, and small sample sizes. 
Furthermore, research focusing on molecular pathways pre-
dominantly examines the microecology of oral flora, with only 
a minority addressing human caries susceptibility. Addition-
ally, although focus has been placed on various gene expres-
sion changes and regulatory pathways of oral microbiota, nu-
merous pathways and related genes remain largely unexplored 
or unvalidated.13,31,75

Future research directions
Given the current state of research, there is still a long way to go 
in anticaries research for postbiotics, where it is necessary to 
use additional experimentation to fill theoretical gaps. This in-
cludes determining effective concentrations, dosages, long- and 
short-term intake, modes of administration, and ensuring 
safety. Several factors justify the aforementioned perspectives. 
First, unlike probiotics, postbiotics do not colonise and grow, 
and their effects will cease once supplementation is stopped. 
Second, these substances could induce side effects like exces-
sive inflammatory responses if their safe concentrations are not 
established. Third, if postbiotics derived from a certain bacterial 
strain are proven to be beneficial, further research is needed to 
explore to what extent various processing and application 
methods can achieve or surpass the expected effects. Fourth, 
most of the studied postbiotics are made by collecting cell-free 
culture supernatants of probiotics or direct heat treatment, 
electromagnetic radiation, and so on. In this process, not only 
the beneficial components of postbiotics are collected, but 
harmful substances are also easily collected, such as aromatic 
amino acids, sulphur-containing amino acids and hybrid 
polyketide nonribosomal peptides.7 This necessitates further 
research for resolution and attention. Fifth, for postbiotic com-
ponents that have previously been shown to prevent cavities, 
the impact on other diseases must be examined. For example, 
while arginine metabolism can reduce sucrose metabolism in 
oral microbes, it may negatively impact the respiratory tract be-
cause the metabolic product of arginine, ornithine, can decar-
boxylate to form polyamines, thereby supporting their sur-
vival.13 Sixth, some challenges remain regarding whether 
postbiotics are as durable as probiotics.45 In the search for post-
biotics with anticaries effects, researchers must be aware that 
the modulation of cariogenic factors by postbiotics derived 
from various microorganisms is strain specific, and that the ef-
fects are also affected by the strain mix, culture environment, 
and processing methods. Future studies should investigate ad-
ditional probiotics or probiotic communities that produce anti-
cavity postbiotics and find their optimal methods of inactivation 
and processing, among which the regulation of pH value is par-
ticularly in need of attention.136 Many studies have found that 
neutralising postbiotics reduces their antimicrobial activity, 
possibly because the function of organic acids is inhibited.90 But 
in view of the phenomenon of acid dissolution, the use of or-
ganic acids to fight caries is still somewhat controversial. How-
ever, the only way to significantly cause demineralisation is to 
lower the acidity of the enamel to a certain point, and it’s nota-
ble that organic acids can weaken the activity of cariogenic bac-
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teria and prevent them from producing acid, which generally 
prevents further pH decline. Moreover, even though lactic acid 
bacteria are capable of producing acid, their cariogenic charac-
teristics have not yet been established by clinical evidence. 
Therefore, creating mildly acidic postbiotics is meaningful as it 
prevents both the acidification and demineralisation of teeth, as 
well as the compromised efficacy of organic acids. However, the 
pH value must be carefully explored because the ideal pH may 
change amongst postbiotics source, and the final product must 
be supported by clear clinical outcomes.90 Although there are 
numerous in vitro trials indicating the beneficial anticaries ef-
fects of postbiotics, it is known that these effects are dependent 
on the duration of action as well as the substances and concen-
trations present within. Considering that postbiotics’ applica-
tion against caries primarily exerts a brief local effect within the 
oral cavity, and that some postbiotics in some studies take lon-
ger to be effective, some postbiotics may need to be considered 
in future studies in conjunction with other anticaries substances 
to shorten the time of entry into force. Research has revealed 
that the anticavity impact of postbiotics is enhanced when com-
bined with other medications. For example, utilising lipotei-
choic acid from Lactobacillus plantarum alone can suppress the 
production of multispecies oral biofilms, and this effect is am-
plified when combined with traditional intracanal medicines.54 
Furthermore, in vitro combination of cetylpyridinium chloride 
and arginine can improve anti-biofilm efficacy.57

Current status of applications
Technological advancements are streamlining postbiotics pro-
duction, thereby broadening their potential applications 
across multiple industries and products.69 Besides, as public 
awareness of dental caries prevention and treatment in-
creases, there is a rising demand for products aimed at caries 
prevention and treatment. Moreover, dentists acknowledge 
that solely relying on time-consuming and expensive restor-
ations falls short in effectively managing caries; successful car-
ies management requires ongoing patient engagement 
throughout their lives. Postbiotics are widely accessible and 
affordable, making the market potential for postbiotics in den-

tal caries prevention and control significant. An increasing 
number of companies are dedicating resources to the research 
and development of such products, with some achieving con-
siderable market success. Despite the popularity of postbiotic 
foods and beverages for gut health and weight management, a 
gap exists in the market for postbiotic anticaries products.69 

Recent studies indicate that postbiotics could play a role in 
modulating susceptibility to dental caries. Although this re-
search area is nascent, the outlook is positive. It is expected 
that continued research advances will result in the creation of 
comprehensive products designed to tackle the various factors 
contributing to susceptibility to dental caries.

Future applications’ directions
Compared to postbiotics with multiple anticaries mechanisms, 
single-mechanism postbiotics may have a significantly reduced 
anticaries effect, or might not achieve the desired outcome. 
For instance, certain probiotics only modulate the immune re-
sponse to combat caries, a method insufficient for caries cure. 
Thus, it may be necessary to combine them with other anticar-
ies agents or switch to postbiotics from other microorganisms 
that offer multiple anticaries mechanisms.54,57 Moreover, given 
the diverse anticaries potential of postbiotics, developing spe-
cific postbiotics aimed at various cariogenic factors could en-
hance personalised dental caries treatments (Fig 5). For exam-
ple, patients with poor oral hygiene might benefit from 
postbiotics that regulate oral microbiota and promote enamel 
remineralisation. In cases of congenital or acquired immuno-
deficiency, the use of postbiotics that stimulate oral immunity 
may be advantageous. Orthodontic patients, at risk of early 
caries, could gain from postbiotics that improve remineralisa-
tion. For insufficient or poor-quality saliva, using postbiotics to 
enhance saliva production may be effective. For pregnant 
women and children before tooth eruption, postbiotics pro-
moting tooth development and calcification are recom-
mended. Currently, anticaries postbiotics are mainly used in 
toothpaste and oral rinse, but the future may bring edible or 
drinkable anticaries postbiotic products, simplifying caries pre-
vention and management.

Fig 5  Potential application of postbiotics in personalised caries  
treatment. The human body suffers from caries for many reasons,  
which may be due to congenital dental dysplasia, insufficient salivary 
secretion, persistent acid production by oral cariogenic bacteria, low 
immunity, and so on. Postbiotics can affect multiple caries-causing  
factors, so in the future, specific postbiotics can be developed for  
different caries-causing factors to personalise the treatment of caries.

Personalized treatment
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CONCLUSIONS

Today’s consumers in the biological market are much more 
aware of the definition and benefits of probiotics compared to 
postbiotics, likely due to the nascent stage of postbiotic re-
search and the limited availability of related products. How-
ever, given the promising prospects for anticaries postbiotics, 
numerous companies are already reshaping the commercial 
landscape. The commercialisation of postbiotics is closely 
linked to foundational research support. There exists a sub-
stantial body of literature on the capacity of postbiotics to 
mitigate caries-causing factors, yet few reviews focus on post-
biotics and caries. To our knowledge, this is the inaugural re-
view specifically addressing postbiotics and caries. Upon re-
viewing the literature, it is evident that some discussions of the 
anticaries mechanisms and related processes of postbiotics are 
somewhat one-sided, while others predominantly focus on or 
adhere to a macro-level analysis and evaluation. This review 
explores the anticaries mechanisms of specific postbiotic com-
ponents, analyses the shortcomings and gaps in current re-
search, and suggests future research directions in the develop-
ment of anticaries postbiotics. We anticipate that this study 
will spur the development of additional postbiotic products to 
prevent and manage caries.
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