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In the past decade, research on the potential applications of stem cells in dentistry has made
great progress. There are at least five different types of multipotent mesenchymal stromal
cells (MSCs) originating from exfoliated primary teeth, including dental pulp, apica papilla,
periodontal ligament, and dental follicle. It has been reported that dental tissue-derived MSCs
are able to generate dentine—pulp-like complexes as well as differentiate into periodontal and
craniofacial progenitor cells. Similar to these dental tissue-derived MSCs, bone marrow-
derived MSCs are also capable of developing into ameloblasts, odontoblasts and periodontal
ligament progenitor cells, as well as regenerating cementum, alveolar bone, craniofacial bone
and articular condyles. Besides adult stem cells, embryonic stem cells are an alternative cell
source for dental tissue regeneration, but the current data are preliminary and are based pre-
dominantly on in vitro data. In addition to these commonly reported stem cells, other progeni-
tor cells with MSC properties are also found in salivary glands, tongue muscle, taste buds and
oral mucosa, and these may play a role in recovering the function of the residing tissues. Other
than these regenerative applications, many reports have demonstrated the utility of these stem
cells in cytotoxicity testing, biocompatibility testing and developmental research. The present
article summarises the above findings regarding the regenerative and other potential applica-
tions of both MSCs and embryonic stem cells.
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S tem cells represent a particular cell population that
is at an unspecialised stage capable of self-renewal
and differentiation into more committed lineages’.
According to their origins and differentiation abilities,
stem cells are broadly classified into two categories:
embryonic stem cells (ESCs) and adult stem cells. The
former is theoretically immortal and pluripotent, capa-
ble of producing all cell types of three germ layers and
body?. However, the latter has a limited life span3*
and is capable of generating committed cell lineages
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of the resident tissues/organs>-°. Among various adult
stem cells, mesenchymal stem cells have the widest
distribution in the human body and have been isolated
from diverse tissues/organs’. Unlike ESCs, there is no
scientific consensus about the immunophenotype of
the bona fide mesenchymal stem cells. The currently
isolated ‘mesenchymal stem cells’ always present high
levels of heterogeneity, which is suggestive of a mix-
ture of stromal progenitor cells at various develop-
mental stages®1? that can be maintained by a minor
population of bona fide stem cells®-!!. Therefore, the
International Society for Cellular Therapy would like
to name these cells multipotent mesenchymal stromal
cells (MSCs) rather than mesenchymal stem cells'?.
Based on the above knowledge, a more practical defi-
nition for MSCs is the stromal-derived cells that can
be propagated long-term in vitro and have multiple
differentiation capacities.
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So far, it has been proposed that both MSCs and
ESCs have great potential in the therapy of many
diseases’-?13:14_ In the past decade, progress has been
made in exploring the clinical potential of MSCs and
ESCs in dentistry. However, most attempts focused on
the regeneration of tooth and periodontal tissues by oral
tissue-derived MSCs!3-17, which have been intensively
reviewed. Additionally, other clinical and non-clinical
application potentials of MSCs and ESCs will be exam-
ined in the present review.

Tissue/organ regeneration

Oral tissue defects and loss are major dental problems,
greatly reducing patients’ quality of life. The causes
are various, including congenital malformation, aging,
periodontitis, post-cancer ablative surgery, trauma,
osteoporotic fractures and progressive skeletal disease.
Currently in clinical dentistry, dental sealants, osseointe-
grated implants, dentures, bone grafting and osteocon-
ductive biomaterials are common remedies to recover
the anatomical structure of the damaged oral tissues.
However, the ideal therapy for those lost or damaged tis-
sues/organs is not only the recovery of their morphology
but also the recovery of their physiological functions.
Stem cell-based replacement therapy provides a promise
to achieve this goal.

Tooth reconstruction

Among various MSCs originating from different tissues,
bone marrow-derived MSCs are most extensively inves-
tigated for regenerating most tissue types all over the
body. Evidence to support tooth reconstruction by these
MSCs can be seen in a report by Ohazama et al'3. Upon
transplantation of a recombination of MSCs and embry-
onic oral epithelium, tooth crowns associated with bone
and soft tissues formed in the renal capsule. A similar
tooth structure was formed when this recombination was
transferred into the jaw. These results were supported by
Hu and coworkers, who mixed MSCs with embryonic
dental epithelial cells followed by re-association with
dental mesenchyme in vitro'®. Results showed that c-kit
positive MSCs could be differentiated into ameloblast-
and odontoblast-like cells in contact with the epithelial—
mesenchymal junction. In the same assay system, c-kit
negative MSCs could also be induced to odontoblast-
like cells. Both groups showed the independence of the
amelo-differentiation of MSCs without cell fusion.
Despite feasible evidence that bone marrow-derived
MSCs can reconstruct teeth, abundant data suggest
dental tissue-derived MSCs to be an alternative cell
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source suitable for whole tooth regeneration?’. These
MSCs are separated from exfoliated “primary teeth
(SHED, stem cells from human exfoliated deciduous
teeth)?!, dental pulp (DPSC)??, apical papilla (SCAP)??,
periodontal ligament (PDLSC)?*, and dental follicle
(DFSC)®. It is reported that both bone marrow-derived
MSCs and dental tissue-derived MSCs reside in the
perivascular area in their respective tissues, and express
some common surface molecules, such as stro-1 and
CD146%. By proteomic characterisation, the regula-
tion of selected proteins, involving Hsp27, Annexin A4
and CRMP4, was conserved between different MSCs
of different origins from different species?’. Both bone
marrow- and dental tissue-derived MSCs can differ-
entiate into at least three committed lineages!®-28:29:
osteo/odontogenic, neurogenic and adipogenic lineages.
Interestingly, similar to bone marrow MSCs, SHED,
DPSC, SCAP and PDLSC display low immunogenic-
ity and immunosuppressive activity>?34. Also, the
mechanisms under this immunosuppressive activity are
independent of apoptosis and are mediated by soluble
molecules. These properties imply that these cells are
suitable for allogeneic transplantation. However, dental
tissue-derived MSCs are more committed to odon-
togenic cells'®33:36 while bone marrow-derived MSCs
are more osteogenesis-oriented under non-inductive
conditions!®. In comparison with bone marrow-derived
MSCs, DPSC, SHED, SCAP and PDLSC have higher
proliferation rates and more population doublings!6-26,
except for DFSC?5. With the colony-forming unit-
fibroblast (CFU-F) assay, DPSC, SHED and PDLSC
displayed higher incidence of the number of colonies
after 10 to 12 days in the same culture conditions at the
same plating cell numbers°.

To date, SHED, DPSC and SCAP have been report-
ed to be able to differentiate into odontoblast-like
cells?!33:37_ In vivo, both DPSC and SCAP can regen-
erate dentine-pulp-like complexes?6-32:3338:39 " while
SHED can only form a dentine-like structure?!-26, For
dentine formation, DPSC predominantly produce repar-
ative dentine, while SCAP is involved in the production
of root dentine32-33:3%. Besides these three dental MSCs,
there are no data on the reconstruction of enamel,
dentine and pulp by PDLSC and DFSC. Interestingly,
outside bone marrow and dental tissues, dermal-derived
MSCs are also able to be induced into odontogenic
lineage cells by exposure to a conditioned medium of
embryonic and neonatal tooth germ cells in culture*?.

Because of the finite in vitro expansion ability of
MSCs!6-26, there is a requirement to identify other cell
sources as possible replacements for large-scale clinical
usage. ESCs are such immortal cells, which theoreti-

Volume 13, Number 2, 2010



LIU/CAO

cally can be infinitely propagated ex vivo and are induc-
ible to develop into all adult cell types of three germ
layers. Unlike the gene-transformed immortal cell lines,
they have a normal karyotype and strong expression of
telomerase to maintain the gene stability*!. This telom-
erase activity is normally absent in MSCs*%43, Recently,
trials to induce ESCs to oral cell types were performed.
It was found that ESCs could attach to the extracted
tooth root slice surface and proliferate after 2 days of
direct seeding. Upon co-culture with periodontal liga-
ment cells in osteogenic inductive medium, ESCs could
synthesise osteogenic markers, such as osteopontin and
osteocalcin**. However, after the embryoid body forma-
tion, ESCs are easier to induce to odontogenic epithelial
cells, which produce ameloblast-specific proteins, such

as cytokeratin 14, ameloblastin and amelogenin®3.

Periodontal reconstruction

Periodontal tissues are composed of gingiva, periodontal
ligament, cementum and alveolar bone. They serve as
a proprioceptor to detect the force on teeth, and a glue
to keep the teeth attached to alveolar bone. Periodontal
diseases are highly prevalent worldwide and result in
bone tissue destruction and subsequent tooth loss. It has
been found that a mixture of autologous bone marrow-
derived MSCs and atelocollagen could repair experi-
mental class III periodontal defects by the regeneration
of periodontal ligament and alveolar bone**#8. It has
been hypothesised that cytokines and signalling mol-
ecules could accelerate the periodontal differentiation
of MSCs*%0_ In the presence of platelet-rich plasma,
bone marrow-derived MSCs displayed prominent perio-
dontal tissue regeneration’!. When these MSCs were
transfected with basic fibroblast growth factor (bFGF),
the regeneration of periodontal bone tissue was acceler-
ated®2. In addition, bone marrow-derived MSCs were
also able to produce cementum when they were cultured
on root slices pre-treated with enamel matrix proteins>3
or implanted with dl-lactide-co-glycolide scaffold>*.
The regeneration of cementum, periodontal ligament,
and alveolar bone was enhanced by the transfection of
the sonic hedgehog gene>>.

Among dental tissue-derived MSCs, stro-1-positive
PDLSC and DFSC displayed the regenerative abili-
ties of cementum?#36-38 and periodontal ligament38-60,
Moreover, in vivo, PDLSC could form cementum—peri-
odontal ligament-like structure and alveolar bone with/
without being loaded onto scaffolds2426:61:62 The dif-
ferentiation to periodontal cells could be programmed
by enamel matrix derivatives, bone morphogenetic
protein 2 (BMP-2) and BMP-76-63_ So far, there is no
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evidence about the periodontal tissue regenerative abil-
ity of DPSC, SHED and SCAP. However, there have
been two trials to induce ESCs to periodontal lineages
by co-culturing with periodontal ligament fibroblasts
and directly contacting with tooth root slices**%*. Only
a minority of cells in colonies showed the characteris-
tics of periodontal ligament progenitor cells.

Craniofacial skeleton and temporomandibular joint/
condyle reconstruction

Bone regeneration is one of the prominent characteristics
of MSCs suitable for clinical application®-%. Abundant
studies have reported that bone marrow-derived MSCs
are able to heal critical-sized segmental bone defects®’,
cranial defects!18:%9 alveolar bone destruction!!:98, and
mandibular defects’?, as well as reconstruct mandibular
condyle’!"73. The formation of lamellar bone in maxil-
lary sinus augmentation by bone marrow-derived MSCs
provides a reliable base for dental implants’*. Most of
this progress was made in combination with the util-
ity of MSCs, biomaterials and/or growth factors?¢. In
the repair of the critical-sized mandibular bone defects,
bone marrow-derived MSCs were loaded onto poly-dl-
lactic-co-glycolic acid scaffolds’”. In the reconstruction
of articular condyles, bone marrow-derived MSCs were
firstly differentiated into osteo- and chondro-genic cells
followed by the encapsulation in poly(ethylene glycol)-
based hydrogel layers’!; the transfection of telomerase
reverse transcriptase could enhance the osteogenesis of
MSCs#243,

Among dental tissue-derived MSCs, SHED and
PDLSC are well tested for osteogenesis. Currently,
studies have shown that they could be directly inducible
into osteogenic lineages?!-7>-7°. PDLSC are sensitive to
the induction of retinoic acid’>, pharmacological stimu-
lation’’ and pulsating fluid shear stress’8. In comparison
with PDLSC, SHED are less sensitive to retinoic acid
stimulation’. Besides the direct osteogenic differentia-
tion, SHED can recruit host osteogenic cells to repair
bone defects’%, but the bone formed by SHED lacks
hematopoietic marrow elements, which are always
observed in the bone formed by bone marrow-derived
MSCs’¢. Besides SHED and PDLSC, there are a few
trials to induce DPSC and DFSC to osteogenic pro-
genitor cells’7-80:81.82 Although the osteogenic markers
could be detected on these cells after the osteoinduc-
tion, it needs in vivo data to consolidate these findings.

Compared with DPSC and DFSC, more solid evi-
dence about the osteogenic differentiation potential of
ESCs is available. ESCs can be inducible to osteogenic
cells by the co-culture with periodontal ligament fibro-
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blasts in vitro®3:84, as well as the inducement of a chem-

ical complex with®3-8¢ or without®” embryonic body
formation. They are also able to form bone structure by
transplanting with hydroxyapatite/tricalcium phosphate
particles into tooth sockets, without the occurrence of
teratoma®®. Besides the osteogenesis, ESCs are also
inducible to chondrogenic cells®*%0, which may facili-
tate the reconstruction of temporomandibular joints.
These in vitro expandable ESC-derived chondrogenic
cells repair critical-sized osteochondral defects without
evidence of tumorigenicity®!.

Gland restoration

Gland damage will cause a deficiency of saliva and var-
ious oral problems, such as mastication and swallowing
problems, dental caries, burning sensations, periodon-
titis, denture problems, and dysgeusia. However, there
is a lack of effective treatment to recover gland func-
tion. In recent years, stem cells have been proposed as
a good remedy”%>?3. Putative salivary epithelial stem
cells®*%9 and intercalated duct stem cells'%0:101 were
identified from oral glands. These salivary stem cells
share the same surface molecule profile as well as
proliferation and tri-lineage differentiation abilities as
pancreatic acini-derived stem cells and bone marrow-
derived MSCs?7. Also, c-kit is their common molecule
expressed on the cell surface?>-9%:101, Upon isoprenaline
stimulation, the intercalated duct cells in parotid glands
may develop to acinar cells!?. In vitro, these salivary
stem cells were inducible to amylase-producing acinar
cells, while after transplantation, they could restore the
morphology and function of salivary glands®®192, To
further explore the properties and future applications
of the salivary stem cells, an immortalised cell line
was established by the transfection of integrin a6p1'03,
These cells were able to achieve both acinar- and duct-
like structures.

Other dental tissue regeneration

To date, there is one study suggesting that bone marrow-
derived MSCs can be recruited into the cheek and differ-
entiate into buccal epithelial cells without host-recipient
cell fusion'%*. However, the identity of the particular
cells for differentiation is unclear. There are stem cells
detected in other oral tissues, such as tongue muscle!%3,
taste buds!%¢ and oral mucosa!?’. However, their effects
in differentiating into dental cells in vitro and regener-
ating oral tissues in vivo are unknown. Notably, there
are mucosa lamina propria-derived stem cells exhibit-
ing multiple differentiation properties to mesodermal,

98

endodermal and neural lineages!?’. They have the same

immunophenotype as bone marrow-derived MSCs and
neural stem cells, and have a low level of expression
of ESC markers. After transplantation, they can form-a
tumour consisting of mesodermal and ectodermal tis-
sues.

Non-regenerative application

Cytotoxicity testing for non-biological materials

With reference to the International Standard (ISO
10993 part 5, 1999), immortal cell lines, such as L-929,
Balb/3T3 and WI-38 etc., are recommended for cytotox-
icity testing. These cell lines have homogeneous mor-
phologies and infinite proliferation, which provide good
reproducibility for in vitro cytotoxicity screening. How-
ever, these cells are normally derived from tumours or
are gene-modified, as well as being of animal origin. The
lack of genetic integrity and the xeno-origin make their
representative identities for normal human cells ques-
tionable. As human stem cells are able to self-renew,
expand in vitro, have normal karyotype, and are usable
for cell replacement therapy, they may represent alterna-
tive suitable cell sources for cytotoxicity testing!08-111,

By using bone marrow-derived MSCs, it was found
that 2-vinyl-8-hydroxyquinoline derivatives could effi-
ciently decrease oxidative stress-induced cell death!!!,
By testing various resin-based sealers on DPSC, CMF
bond adhesive showed a better supportive effect on
cell viability and proliferation than Prime&Bond NT,
Clearfil S(3) and XP Bond!!'?. Being evaluated on the
same stem cells, laser phototherapy displayed a posi-
tive effect on improving DPSC growth in a nutrition-
ally deficient condition''?. Ameloblast stem cells are
sensitive to the anti-microtubule agent vinblastine. The
cytotoxicity of vinblastine on ameloblast stem cells
displayed a dose-dependent effect!!3. Recently, human
ESC-derived fibroblasts were established and were
reported to be more sensitive to the cytotoxicity of
mitomycin C than L9299 suggesting another stable
cell source available for in vitro cytotoxicity testing.
Theoretically, ESCs are immortal, and hence can poten-
tially be an infinite source of fibroblasts.

Biocompatibility testing

Biocompatibility is a broad concept about the behav-
iour of biomaterials in various contexts. In regenerative
medicine, the biomaterials are fabricated as a scaffold or
matrix to repair a structural defect or to support physi-

Volume 13, Number 2, 2010



LIU/CAO

ological activities of in vitro expanded cells in the host,
without eliciting any undesirable effects on both cells
and host. Good biocompatibility is a prerequisite for the
clinical application of new biomaterials and their tissue-
engineering products, including implants and scaffolds.
The current compatibility testing follows the guidelines
of ISO 10993 prior to clinical study. As suggested, vari-
ous stem cells will be promising cell sources for future
dental and medical application. Recently, some prelimi-
nary data about the biocompatibility of dental bioma-
terials were obtained based on cytotoxicity, genotoxic-
ity and embryotoxicity tests on bone marrow-derived
MSCs!14-120 nd ESCgl121:122.

Developmental research

The initiation signals for tooth development are from the
contact of oral epithelium with neural crest-derived mes-
enchyme!23. These signals mainly involve the members
of hedgehog, Wnt, FGF and the transforming growth
factor-beta superfamilies. However, the particular mol-
ecules triggering and regulating this process are still
unclear, and most of the evidence is based on studies of
mouse embryos. Therefore, to address these questions,
human tooth developmental models will be of great
importance. In 2004, Ohazama and coworkers found
that a complete tooth primordium could be produced
from bone marrow-derived MSCs upon interaction with
embryonic oral epithelium'8, suggesting that the neu-
ral crest-derived mesenchyme is an optional cell source
during the development of teeth. Furthermore, an in vitro
three-dimensional human DPSC-scaffold—dental epithe-
lial cell model was created to investigate the epithe-
lial-mesenchymal interactions during tooth morphogen-
esis!?*. In this model, DPSC and dental epithelial cells
showed a different pace of differentiation and a different
spatial expression of dentine sialoprotein in the absence
of the differentiation medium. These results confirm the
possibility and feasibility of establishing in vitro tooth
developmental models.

Summary

In summary, the present review has reported the clinical
and non-clinical application potential of bone marrow-
derived MSCs, dental tissue-derived MSCs and ESCs in
dentistry. Although the research progress is promising
for regenerative medicine, it is not readily translatable
to the clinic. Firstly, differentiation to desired commit-
ted lineages by these stem cells is not controllable. This
differentiation uncertainty will subsequently lead to low
efficiency and efficacy upon transplantation or transfu-
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sion. Secondly, the biosafety of these stem cells is a
concern. Currently, all cells are expanded ex vivo under
culture conditions with xeno-components. The possi-
ble contamination of unknown xeno-biohazard will put
patients in danger. Additionally, in spite of limited life
span and restricted differentiation ability, adult stem
cells still have a high risk of being tumorigenic'%. It
was reported that long-term in vitro culture of stem cells
could cross-present exogenous antigens!2°. These exog-
enous antigens can possibly trigger an immune response
after being transplanted, thereby decreasing the viability
of stem cell grafts. Thirdly, the topographic structure of
tooth and other oral tissues/organs is not reproducible by
using pure stem cells. It is necessary to apply scaffolds
or other carriers. The biocompatibility of stem cells and
scaffolds requires further testing. Fourthly, limitation in
the availability of autologous stem cells will hinder its
application in tissue/organ regeneration. The application
ofallogeneic adult stem cells as alternative cell sources is
still debatable. Recently, induced pluripotent stem cells
were successfully established from oral mucosa fibrob-
lasts via retroviral gene transfer of oct4, sox2, c-myc
and klf4e'?7. This is another solution towards achiev-
ing personalised regenerative cells. However, safety and
gene integrity are questionable. Last but not least, the
cost effectiveness of stem cell-based therapy should be
another consideration.

Practically, stem cells are good tools for dental
research and cytoxicity testing in vitro. Nevertheless,
some time is required to establish a standard operation
protocol for evaluating the cytotoxicity of dental/medi-
cal chemicals and medicine.
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