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Tooth eruption is the process whereby the developing tooth moves to its functional position
in the occlusal plane and it occurs concomitantly with formation of the tooth root, which is a
critical component of the tooth anchored to surrounding alveolar bone through the periodon-
tal ligament. Post-eruptive tooth movement ensues that once occlusion is achieved, the teeth
maintain their alignment within the alveolar bone to facilitate proper bite function through
periodontium remodelling. Tooth overeruption presents a clinically significant issue, yet the
precise mechanisms by which alterations in occlusal forces are translated into periodontal
remodelling remain largely unexplored. In this review, the present authors aim to outline the
latest progress on the potential mechanisms governing tooth root formation and homeostasis
during tooth eruptive and post-eruptive movement. Based on recent findings using various
mouse models, we provide an overview of the collaborative intercellular interaction during root
formation, including Hertwig’s epithelial root sheath, dental papilla and dental follicle. More-
over, we summarise the potential mechanism underlying post-eruptive movement mainly in
view of the responses of periodontal tissues to vertical mechanical stimuli. In sum, the precise
regulatory mechanisms during tooth eruption throughout life will shed light on disease treat-
ment of tooth eruption defects and overeruption.
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The tooth, which comprises two functionally distinct
components, the crown and the root, is critical for
mastication, digestion and phonation.!»? Tooth devel-
opment begins with the dental lamina and underlying
dental mesenchyme, and involves sequential, recipro-
cal epithelial-mesenchymal interactions. The dental
lamina derives from thickened oral epithelium, giving
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rise to the enamel organ (epithelial component). The
condensed dental mesenchyme is derived from cranial
neural crest cells after their migration into the oral re-
gion of the first pharyngeal arch, and diversifies into
dental papilla (DP) and dental follicle (DF) (mesen-
chymal components). DP gives rise to dental pulp and
odontoblasts, whereas DF differentiates into periodon-
tal tissues including the periodontal ligament (PDL),
cementum and alveolar bone.?*

Tooth eruption refers to the movement of the tooth
from its developmental location within the arch to its
functional position in the oral cavity,>° a process that
occurs concomitantly with root formation.® The pro-
cess of tooth eruption can be divided into three distinct
phases: pre-eruptive tooth movement (phase 1), erup-
tive tooth movement (phase 2) and post-eruptive tooth
movement (phase 3).° Pre-eruptive tooth movement is
a series of intricate biological events that take place for
the preparation of tooth emergence into the oral cav-
ity, which mainly consists of the early stages of tooth
development until the onset of tooth root formation.®
Eruptive tooth movement occurs accompanied by tooth
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Fig 1a to ¢ Cellular interactions during tooth eruption and
tooth root formation. Coronal DF regulates osteoclastic bone
resorption during eruptive tooth movement (a). The interaction
between HERS and DP participates in tooth root formation (b).
Basal DF regulates osteoblastic bone formation during eruptive
tooth movement (c).

root formation, and lasts until the tooth crown reaches
the occlusal plane. This phase can be divided into two
stages: intra- and supraosseous eruptive tooth move-
ment.® It involves the formation of Hertwig’s epithelial
root sheath (HERS), root dentine, the PDL, cementum,
alveolar bone in the apical tooth region, and osteoclast-
mediated bone resorption of the cortical shell overlay-
ing the tooth crown for eruptive path formation, which
jointly facilitate the emergence of the tooth into the
oral cavity.>”? Once the tooth reaches its occlusal pos-
ition, occlusal force starts to stimulate the continuous
maturation of the periodontal attachment apparatus of
the tooth.! Physiological post-eruptive movement in a
vertical direction happens throughout life, which com-
pensates for coronal wear and maintains the position
of the tooth within the alveolar bone to achieve proper
occlusion.!? Vertical post-eruptive movement leads to
the concerning issue of tooth overeruption after the
loss of the opposing occlusion.%1%11 Post-eruptive tooth
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movement in a horizontal direction happens mainly
due to adjacent tooth loss or under orthodontic force.?-
14 The potential mechanisms that govern tooth root
formation and homeostasis during eruptive and post-
eruptive tooth movement remain largely unexplored.

In this review, the present authors summarised
the potential mechanisms underlying eruptive and
post-eruptive tooth movement (Table 1), specifically
highlighting the collaborative intercellular interaction
involved in tooth eruption, including HERS, DP and DF
(Fig 1). For post-eruptive tooth movement, we focused
on the responses of periodontal tissues to vertical
mechanical stimuli (Fig 2). Additionally, we described
various mouse models used to study occlusal hypofunc-
tion or hyperfunction, including molar extraction,>-??
dietary modifications,?>?% induction of masticatory
muscle atrophy?®?7 and the use of intraoral bite blocks
or other devices (Table 2).16,28-31

Eruptive tooth movement

Pre-eruptive tooth movement consists of the early stages
of tooth development until the onset of tooth root forma-
tion. The development of the tooth crown begins from
the dental lamina, followed by a series of bud, cap and
bell stages. At the interface between the dental epithe-
lium and mesenchyme, odontoblasts and ameloblasts
differentiate to form dentine and enamel, respectively.3?

The process of tooth eruption can be regarded as the
result of increments of basal tissue and subtractions
of coronal tissue, which are mediated by intricated
cellular interactions between HERS, DP, DF and so on
(Table 1 and Fig 1).571133-37 The increments mainly
include root formation, PDL formation and osteogen-
esis in the root region, providing motive forces for cor-
onal eruption. Meanwhile, the decrement refers to the
formation of the eruption pathway through osteoclastic
activities above the tooth crown region. After the bone
overlying the erupting tooth is resorbed, the reduced
dental epithelium and the oral epithelium fuse, degen-
erate and form an epithelial canal through which the
tooth erupts, thus preventing bleeding during supraos-
seous tooth eruption. Then the tooth gradually reaches
its functional position and achieves occlusal contact
with the opposite tooth.23

HERS

Tooth root initiation and shaping

Once crown formation is completed, epithelial cells
of the inner and outer enamel epithelium proliferate
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from the cervical loop of the enamel organ to form a
double layer of cells known as HERS.%383 HERS cells
express strong epithelial cell markers Keratin 14 (K14)
and E-cadherin.?**0 HERS elongates apically, acting as
a template for root morphology and guiding the emer-
gence of multi-rooted structures in posterior teeth. It
invaginates inwards towards the pulp at the location of
future root furcation, thus forming multiple roots. Devi-
ations in this process lead to a variety of morphological
root variances such as supernumerary roots, pyrami-
dal-shaped roots and taurodontism.*! For example,
researchers found that loss of Wntl0a in the HERS,
which is a ligand in canonical Wnt signalling, inhibits
cell proliferation and horizontal elongation, leading to
taurodontism with the absence of or apically located
pulp floor and pulp chamber enlargement.*243

Regulatory mechanism of HERS

The formation and function of HERS are regulated by
multiple classical signalling pathways, such as sonic
hedgehog (Shh), Wnt/B-catenin and bone morphogenic
protein (BMP)/transforming growth factor-beta (TGF-f3)
signalling pathways.** Shh, a member of the vertebrate
Hh family and expressed in the apical HERS, is crucial
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for epithelial-mesenchymal interactions at the root
apex. Nakatomi et al** identified PtcI as Shh target genes
mainly expressed in DP adjacent to the HERS, whose
loss leads to inhibited cell proliferation, root elongation
and disturbed eruption in homozygous Ptc™® mutants
at 4 weeks. B-catenin, expressed in HERS during tooth
root formation, is a key mediator of canonical Wnt sig-
nalling. Yang et al®® reported that the inactivation of
B-catenin in HERS leads to interrupted root elongation
due to premature disruption of HERS. In addition, it has
been reported thatloss of Wnt ligands results in a break-
down of the epithelial integrity of HERS with aberrant
cellular projections.*® BMP/TGF- signalling is a key
regulator for stem cell fate determination in many epi-
thelial tissues, such as the hair and intestine.*”*¢ BMP
signalling is actively involved in regulating cell fate deci-
sions during the formation of HERS. Yang et al* showed
that cessation of the epithelium BMP signalling switches
differentiation of crown epithelia into the root lineage,
forming ectopic cementum-like structures using a Krt5-
rtTA;tetO-Cre; Alk3V mouse model. Li et al®° found that
loss of Smad4 in the dental epithelium prolongs the
maintenance of the cervical loop and molar crown de-
velopment through BMP-SMAD4-Shh signalling using a
Krt14rtTA;tetO-Cre; Smad4/:Shh/E mouse model.
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Table 2 Comparison between different models of occlusal hypofunction/ hyperfunction.

Model Surgery Animal Age Site/methods  Analysis time Phenotype
6/21 d after Increased cellular cementum; larger cemen-
Swiss Webster mice 35d Maxillary molars / ! 9
surgery tocytes'®
3 maxillar 14/30/60 d Lower alveolar bone height (CEJ-ABC);
Gli1-CreER; tdT mice | 4wk Y 130/ one height ( )
molars after surgery lower bone density’
Lepr-CreER: tdT mice 6wk Maxillary first 14 d after sur- | Impaired osteogenic differentiation of Lepr+
molar gery cells?®
3 maxillar Decrease in BV/TV and mineral density,
C57BL/6J mice 4wk molars y 2/4/6 wk bone resorption in the medullary space and
PDL atrophy?20
Collagen disorder in PDL, enhanced osteo-
Extraction 3 maxillar genic activity on the PDL—bone border,
C57BL/6J mice 4wk molars y 1/4/12 wk aggravated osteoclast activity in alveolar
bone inner part, increase in alveolar bone
height, gain in mandibular width'”
Active bone formation on the PDL—bone
Mandibular 4 wk after sur- L.
Sprague-Dawley rats 5wk border, expansion in bone marrow and
molars gery . .
decrease in bone volume
12 wk after
Hypo- Sprague-Dawley rats; ) ) )
loadin ) ) 6 wk | 3 maxillary/man- |surgery (rats); | Decreased alveolar bone loss in the Piezo1
g Piezo1-CreER; Rosa26- . )
. ) (rats) | dibular molars 3 wk after sur- | activated group??
Ai47 mice )
gery (mice)
Axin2-CreER; R26Rm™
. ) P15 | Soft diet P15-65 PDL atrophy?3
Diet mG/* mice
Sprague-Dawley rats 21 wk | Soft diet 27 wk Higher and wider alveolar process?2®
Masseter and 4 wk after sur- | Masseter and temporal muscle atrophy and
M.uscle a.trophy Sprague-Dawley rats 18 wk p . . 26p y
(single side temporal muscles | gery alveolar bone loss in injected side
botulinum toxin | New Zealand white 4/12 wk after Decreased bone volume in molar regions of
N . 5mo | Masseter muscle o7
[BTX] injection) | rabbits surgery both sides
. . mx M1: elongation of both the mesial root
Maxilary first ) )
. 6 wk after sur- | and its surrounding alveolar bone; mn
Mice 5wk | molar (flatten . L
gery M1: overeruption of the mesial side of the
cusps) o
tooth
Devices
Bite-raising appli- Longer and narrower roots especially the
Wistar-strain rats 5wk gapp 16 wk mesial root, a decrease in root area and PDL
ance )
thickness and area?®
Increased collagen deposition, a thicker,
stiffer PDL, activated bone resorption fol-
X Axin2-CreER; R26R™T Maxillary second |7/14/28/56d K X P X
Molar extraction G K 5wk i lowed by bone formation, leading ultimately
mG/+ mice and third molar after surgery . . i
to mineral apposition and increased alveolar
bone density®
| h ki -
C57BL/6 J mice 3wk | Hard diet 14 wk Osteocytes balanced the cytokine expres
Diet sion to enhance jaw bone formation24
ie
A)éi22-greER; R26Rm™ P15 Hard diet P15-65 Masti.catiozn3-induced strain maintained the
Hyper- mG/+ mice PDL fibres
loading Maxillary first L -~
) 14 d after sur- | Promoted osteogenic differentiation of
Lepr-CreER; tdT mice |6 wk | molar(adhere 16
) ) gery Lepr+ cells
composite resin)
Upregulated expression of CCL2 in PDL,
) 3 mx molars .
Devices 5 X 8 wk/ i 4-7 d after CCR2 in pre-osteoclasts, and tartrate-
Wistar rats/ddY mice (bond stainless X X . .
5wk . surgery resistant acidphosphatase-positive cells in
steel wire) 5
alveolar bone
CCLZ" or CCRZ- mice | 5wk 3 maxillary 4-7 d after Incr.e.alsed ex;;l(']ession of CCL3 and TRAP-
molars surgery positive cells

P, postnatal day.
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DP
Tooth root pulp and dentine formation

At the cap stage, the DP is formed underlying the invag-
inated dental lamina. Subsequently, DP cells develop
into dental pulp cells and odontoblasts.?°! It is well
documented that stem cells that exist in the apical DP
could contribute to tooth root formation.>? Using lin-
eage tracing mice models, researchers have validated
that various markers can be utilised to identify stem
cells in the DP in vivo, such as Wnt1,>3 osterix (0SX),>
Glil,> Axin2°¢ and a-smooth muscle actin (a-SMA).5’
Recently, utilising single-cell transcriptome profiling of
the mouse molar at postnatal day 3.5 (P3.5), Jing et al®®
revealed that apical DP cells (Aox3+/Tacl+) are progeni-
tor cells with a highly proliferative capacity and give rise
to odontoblasts and the dental pulp lineage.

Regulatory mechanism of DP

The development and differentiation of DP are regulated
by multiple molecular factors. Nuclear factor I-C (NFIC)
is a transcription factor (TF) that binds to DNA through
CAATT-boxes. The function of NFIC during postnatal
root development has been confirmed using the Nfic’
mouse model, which exhibits short and malformed root
morphology but displays normal crowns.>%%° Besides,
Liu et al> proved that Nfic regulates Hh signalling in
the dental mesenchyme by upregulating Hhip, an Hh
attenuator, thus contributing to apical DP growth and
proper root formation. Zhang et al®! suggested that OSX,
a mesenchymal TF involved in osteogenesis and odon-
togenesis, promotes odontoblast and cementoblast dif-
ferentiation and root elongation using a Col1-Cre;Osxfl/fl
mouse model. Beyond its role in HERS, Wnt/B-catenin
signalling activity in odontoblast-lineage cells is also
indispensable for root formation. Root odontoblast dif-
ferentiation has been found to be impeded with dimin-
ished expression of collagen type I, alpha 1 (Collal),
osteocalcin (OC) and dentine sialophosphoprotein
(DSPP), leading to failed root formation with conditional
knockout B-catenin in developing odontoblasts.®2:63
Epigenetic regulation has also been implicated in
the processes of root formation. EZH2, the catalytic
subunit of the polycomb repressive complex 2, silences
its target genes by generating the lysine 27 trimethyla-
tion epigenetic mark on histone H3.* ARID1A contains
a DNA-binding domain and mediates the chromatin
remodelling function of the SWI/SNF complex, play-
ing a role in cell cycle regulation, metabolic repro-
gramming and epithelial-mesenchymal transition.®%66
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Jing et al®’ revealed that the interplay between EZH2
and ARID1A epigenetically modulates Cdkn2a (a cell
cycle inhibitor) expression in the dental mesenchyme,
influencing root patterning and growth through tar-
geted deletion of EZH2 in the dental mesenchyme
using Osr2-Cre;Ezh2/fl mouse models. Using a Glil-
CreER;Arid1a?/f mouse model, Du et al showed that
loss of ARID1A impairs the differentiation-associated
cell cycle arrest of tooth root progenitors through Hh
signalling regulation, leading to shortened roots and
delayed eruption.

DF

Periodontal tissues and eruption pathway formation

The DF, outside both the enamel organ and DP, contrib-
utes to the periodontal attachment apparatus includ-
ing the cementum, PDL and alveolar bone. It has been
demonstrated that distinct cellular domains within the
DF function differently during tooth crown and root de-
velopment.33%58 It has been confirmed that the lateral
and apical DF domains contain precursors that can dif-
ferentiate into PDL fibroblasts, cementoblasts and al-
veolar bone osteoblasts.®°36° Thus, the removal of the
basal half of the DF results in no bone accrual and tooth
eruption!!, whereas coronal DF participates in the regu-
lation of osteoclastic bone resorption,® and the removal
of the coronal DF could result in failed alveolar bone
resorption and tooth eruption.™!

Regulatory mechanism of DF

Parathyroid hormone-related protein (PTHrP)-PTHrP
receptor (PPR) autocrine signalling has been found
to be critical for root formation and tooth eruption.
PPR knockout in PTHrP+ DF cells was shown to cause
failed tooth eruption, which may be induced by a lack
of motive forces.”»6°71 In addition, it is reported that
Igfl-Igflr signalling mediates the cell-cell interaction
between lateral and apical DF, which is crucial for PDL
development, with its absence resulting in an enlarged
PDL area but not affecting root length at P16.5 using
Lepr-Cre;Igf1% and Slc1a3-CreER;Igf1r! mouse mod-
els where Igfl and Igflr were specifically knocked out
from the lateral and apical DF.%8 In Osr2-Cre;Foxp4f/f
mice, loss of Foxp4 in DF leads to an increased PDL area
and diminished periostin expression, suggesting that
the lineage contribution of the apical DF is regulated in
part by Foxp4.°8

The cellular expression of factors involved in bone
remodelling varies within different DF domains and
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stages, reflecting the coordination of osteogenesis and
osteoclastogenesis during eruption.3>72 RUNX2 is a piv-
otal TF imperative for the differentiation of osteoblasts.
RUNX2 mutations result in cleidocranial dysplasia
(CCD), which impairs osteogenesis by inhibiting osteo-
blast-associated genes, including alkaline phosphatase
(Alpl), Osx, OC and Collal, thereby hindering alveolar
bone formation, which functions as a motive force for
tooth eruption.”®7* Tang et al’> identified that Nel-like
molecule type 1 (Nell-1) protein is restricted to the
odontoblasts and endothelial cells of blood vessels dur-
ing tooth eruption, and it has been revealed that Runx2
directly regulates the expression of Nell-1 by binding to
osteoblast-specific binding element 2 sites in the Nell-1
promoter in vitro experiment.’®’” Thus, the Runx2/Nell-
1 axis in the basal DF may act as one of the key regula-
tory pathways during alveolar bone formation.® BMP-2,
BMP-3 and tumour necrosis factor-alpha (TNF-a) are
notably expressed in the basal DF, correlating with the
onset of alveolar bone formation at P3 and accelerated
bone growth at P9 in the alveolar bony crypt of the man-
dibular first molar in rats.”>78 Yao et al’? established that
TNF-a enhances the expression of BMP-2 and BMP-3,
with a more pronounced effect on BMP-2.

Furthermore, the coronal DF plays a prominent role
in modulating osteoclast activity through the upregu-
lation of receptor activator of nuclear factor kappa B
ligand (RANKL) and downregulation of osteoprotegerin
(OPG), thereby creating the eruption pathway.3%79-81
The crucial modulation of DF on osteoclastogenesis
shows two bursts in the rat mandibular molar develop-
ment model. At P3, it triggers a significant increase in
osteoclast formation with the expression of chemotac-
tic protein-1 (MCP-1) and colony-stimulating factor-1
(CSF-1) at peak levels, attracting osteoclast precursors
and stimulating their differentiation.!-3%82 By P9-11,
the expression of CSF-1 and MCP-1 dips, while TNF-a
and vascular endothelial growth factor (VEGF) peak.
VEGF can also recruit osteoclasts and upregulate RANK
expression in endothelial cells and osteoclast precur-
sors, suggesting a role in osteoclastogenesis beyond
recruiting precursors.3384

Interaction between HERS, DP and DF

HERS, DP and DF interact closely during tooth root de-
velopment. In addition to its foundational role in root
shaping, HERS also plays a vital role during the differ-
entiation of root odontoblasts in DP during root dentine
formation." Mullen et al® proved that HERS secretes
laminin 5 to induce the growth, migration and differ-
entiation of dental mesenchymal cells in the DP. Huang
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et al®® demonstrated that tissue-specific knockout of
Smad4 in HERS, the common mediator of BMP/TGF-f3
signalling, results in abnormal enamel and dentine for-
mation because of the absence of SMAD4-Shh-NFIC sig-
nalling. Yang et al® indicated that B-catenin plays roles
in cell-cell adhesion of HERS to maintain its structural
integrity as well as affect epithelial-mesenchymal tran-
sition (EMT), and also regulates the odontogenic dif-
ferentiation of DP through inducing the expression of
morphogenetic regulators such as Osx and Nfic, using
Shh-CreER;CtnnbV;R26R mice. Zhang et al%¢ demon-
strated that HERS-derived exosome-like vesicles (ELVs-
H1) promote the migration and proliferation of DP cells
and also induce odontogenic differentiation and activa-
tion of Wnt/B-catenin signalling.

Concurrently, HERS is also essential for the differ-
entiation of DF cells into periodontal tissues.’” PDL
formation starts with the migrated DF cells in contact
with the HERS between root dentine and alveolar bone,
coinciding with the beginning of HERS perforation.80,88
Luan et al®® demonstrated that although HERS itself did
not produce cementum, its fenestration was an essen-
tial requirement for the onset of cementogenesis. This
finding is consistent with Heretier’s hypothesis that
the absence rather than presence of HERS epithelial
cells was critical for cementogenesis, but they did not
exclude the possibility of HERS playing an inductive
role during the initiation of acellular cementogen-
esis.8%0 Recently, some research has shown that HERS
cells may have the capability to transform into PDL
fibroblasts and cementoblasts in the development of
the periodontal tissues.’l%2 Although it is still ques-
tionable whether participation is autonomous or non-
autonomous, it is undeniable that HERS plays a crucial
role in the formation of cementum.

DF development could also be regulated by the adja-
cent apical DP. Lin et al® proved that stem cells from
apical DP (SCAPs)-secreted osteoglycin (OGN) inhibits
the differentiation and maintains the stemness of DF
stem cells (DFSCs) via the OGN-HH pathway during
root development by employing a transwell coculture
system. Meanwhile, partial SCAP differentiation mark-
ers were upregulated after DFSC coculture. They also
demonstrated that OGN knockout leads to accelerated
root elongation and dentine deposition from PO to P30
in Ogn~-mice, probably due to upregulated HH signal-
ling in the apical DP and DF.%3

The precise regulatory mechanism of tooth erup-
tion is widely debated. Tooth eruption and tooth root
formation had been considered independent since
teeth can emerge into the oral cavity without roots or
PDL.%4% Xu et al®® found that the absence of mem-
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brane-type matrix metalloproteinase 1 (MT1-MMP) in
mesenchyme leads to malformed roots and decreased
alveolar bone formation but with teeth erupted into the
oral cavity. Cui et al®’ identified deletion of PTHIR in
Prx1+-progenitors results in delayed tooth eruption due
to reduced alveolar bone formation despite unaffected
molar root and PDL development. Controversy remains
over the relationship between tooth root formation
and tooth eruption, with some other studies support-
ing the idea that the processes of tooth eruption and
root formation are intertwined.®’? Tooth eruption is
accompanied by root development and periodontal tis-
sue formation, and the direction of crown movement is
consistent with that of root growth.!70 In addition, in
patients with primary failure of eruption (PFE), defect-
ive tooth eruption is likely to be caused by a lack of
motive forces, as the eruption path is normal.”®

Post-eruptive tooth movement

Normal homeostasis

The tooth eruption process does not stop upon reach-
ing the occlusal plane but continues throughout life. In
humans, mastication involves cyclic loading by forces
ranging from tens to occasionally hundreds of Newtons
on the teeth. With each chewing cycle, the teeth may
move up to several tens of microns.® In homeostasis,
continuous remodelling and homeostasis of the cemen-
tum and PDL of the tooth root, as well as the alveolar
bone, are sophisticatedly maintained (Table 1).610:%

Cementum physiological apposition

Cementum is a mineralised tissue enveloping the roots
of teeth, formed by cementoblasts, marked with ALPL,
bone sialoprotein (BSP) and OC, and plays a key role in
the periodontal attachment apparatus.?1% Xie et alll
identified that Axin2+ PDL cells are primary progenitor
cell sources for cementum formation. Koehne et all%?
demonstrated that ribosomal S6 kinase RSK2 is a crit-
ical regulator of cementoblast function. They found
cementum hypoplasia in Rsk2-deficient mice, which
results in detachment and disorganisation of the PDL
and is associated with significant alveolar bone loss with
age.192 Cementocytes, the embedded cells within cellu-
lar cementum, exhibit mechanoresponsive properties
in response to mechanical forces.!% Cellular cementum
primarily exists on the cervical portions of the root, con-
tributing to tooth anchorage. It extends over the apical
root dentine and facilitates continuous occlusal adjust-
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ment. While similar to bone in composition, cementum
is avascular, does not undergo physiological remodel-
ling and grows by continuous apposition throughout
life.103,104 Boabaid et all® demonstrated that cemento-
blasts inhibit osteoclast differentiation by producing
and releasing OPG, suggesting that cementoblasts may
play a role in maintaining lower levels of osteoclastic
activity at the root surface compared to the adjacent
alveolar bone in vitro research. Meanwhile, Nemoto
et all% reported that cementoblasts contribute to the
recruitment of osteoclastic precursor cells through
the upregulation of osteoclastogenesis associated
chemokines/cytokines and RANKL through the TLR-2
signalling pathway in response to Porphyromonas gin-
givalis lipopolysaccharide in vitro experiments.

Collagen organisation and maintenance in PDL

PDL is made up of collagen fibre bundles locat-
ed between the cementum and the inner wall of the
alveolar bone.>1%7 Tt functions not only as a cushion
against masticatory pressure but also as a transducer
that perceives physical signals and converts them into
biological responses within the alveolar bone.?’ Stem/
progenitor cells within the PDL termed PDLSCs, which
can be marked with Axin2+,1%23 Gli1+%1% and Lepr+
cells,1%19° have robust self-renewal and multilineage
differentiation capacities and are critical for the mech-
anical response of periodontal tissue.!6:18,109-111 pp],
fibroblasts are spindle-shaped and elongated connective
tissue cells derived from PDLSCs. They can play an essen-
tial role in the mechanical response through primary
cilia, which are non-motile sensory organelles.!12-115
Koda et al''® reported that Mohawk homeobox (Mkx),
a tendon-specific TF, regulates PDL homeostasis by
upregulating the expression of collagens such as Collal
and Colla2, and suppressing osteogenic-related gene
expression including Osx, Alpl and Runx2 in PDL fibro-
blasts. Small leucine-rich proteoglycans (SLRPs) are
extracellular matrix molecules, suggested to regulate
collagen organisation and cell signalling. Wang et all1°
demonstrated the importance of SLRPs in maintaining
periodontal homeostasis through regulation of TGF-f/
BMP signalling, matrix turnover and collagen organisa-
tion using a BgnFmod’ mouse model.

The interaction between PDL fibroblasts and osteo-
clast precursors profoundly influences periodontal
homeostasis. Various mechanical forces to PDL fibro-
blasts could alter their capacity to produce osteoclas-
togenesis-related molecules.!12117:118 Bloemen et alll’
reported a marked increase in the expression of inter-
cellular adhesion molecule-1 (ICAM-1) and osteoclas-
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togenesis-related markers (RANKL, RANK, TNF-qa), as
well as a significant rise in osteoclast-like cell numbers
in co-cultures of blood mononuclear cells (PBMCs) with
human primary PDL fibroblasts, compared to PBMCs
cultured alone.

Continuation of remodelling in alveolar bone

Tooth roots are embedded in the alveolar bone by PDL
and the alveolar bone continues remodelling in its phys-
iological state through coupled osteoclast-osteoblast
actions.?%11%:120 Osteocytes, the most abundant cells in
bone, possess mechanosensing appendices stretching
through bone canaliculi.!?! These cells regulate local
bone remodelling by directing osteoblast and osteoclast
activity in response to mechanical stimuli.%* In addi-
tion, when stimulated by occlusal force, osteocytes have
the capability to regulate periodontium tissue turnover
by activating PDLSCs that surround the neurovascular
bundle, contributing to periodontal homeostasis upon
mechanical force,!8110:122:124 for example sclerostin
(SOST) from the osteocyte is a negative feedback regu-
lator for Glil+ PDLSC activity.!® Yang et al?? identified
Piezol as the pivotal mediator of occlusal force in osteo-
blasts, thereby sustaining alveolar bone homeostasis
through the facilitation of osteogenesis and the orches-
tration of catabolic pathways via Fas ligand (FasL)-medi-
ated osteoclastic apoptosis.

Hypo-loading condition

It is common to employ an unopposed mouse molar
model to investigate axial tooth movement. A hypofunc-
tional state leads to augmented area and thickness in
apical regions, suggesting that apposition responds to
occlusal load changes with neo-cementogenesis adapt-
ing to maintain occlusal height.1>125126 Significant
cementum formation is associated with elevated extra-
cellular matrix gene expression such as Coll, integrin
B5 and osteonectin gene expression.>12%126 The notable
changes following the loss of an opposing tooth high-
light the significant role of cementum; however, the
mechanisms by which cementum responds to altera-
tions in occlusal forces require further investigation.
The collagen fibre density within the PDL decreases
with compromised structural integrity under a hypo-
functional state.17,23 PDL-associated protein-1 (PLAP-
1)/asporin is an extracellular proteoglycan uniquely
localized in the PDL. Chen et all7 demonstrated that
unloading reduces PLAP-1 levels in PDL fibroblasts sig-
nificantly, resulting in inhibited Coll expression while
promoting the expression of Osx and OC, thereby sup-
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pressing collagen synthesis and inducing osteogenesis.
Bardet-Biedl syndrome 7 (BBS7) is an indispensable
constituent of a protein complex named the BBSome,
and plays a crucial role in ciliogenesis and regulating
Shh signalling activity.127-129 Chang et al130 found
that the expression of BBS7 is downregulated in PDL of
unopposed teeth in vivo and in vitro, and they reported
that occlusal force influences the expression of BBS7
to mediate Shh signaling activity, which is vital for cell
migration and thus maintaining proper PDL homeo-
stasis. In a recent study, CD31+ Endomucin+ type H
endothelium, especially abundant at the root furcation
regions, plays a pivotal role in mechanotransduction
in PDL through an intracellular Piezol/Ca2+/HIF-1a/
SLIT3 signalling axis.20 Following occlusal unloading,
the density of type H vasculature and coupled OSX+
osteoprogenitors decline significantly.20 Gli1+ PDLSCs,
predominantly localised within the apical PDL space
and surrounding the neurovascular bundle, are respon-
sible for periodontal tissue turnover and damage repair.
Men et all8 demonstrated that unloading inhibits
Glil+ PDLSC activation by upregulating SOST secreted
by osteocytes in alveolar bone. Zhang et all6 proved
that Lepr+ PDLSCs, located in the perivascular niche,
are reduced significantly in hypo-loading, resulting in
impaired osteogenic differentiation through Piezol-
mediated mechanosensing in the periodontium.

However, opinions differ on the issue of bone mass
in unloading models, with some stating that there is an
increase and others a decrease. This disagreement may
be due to the different detective sites in the alveolar
bone and measurement methods. For the resorption
or formation of alveolar bone, the PDL-bone border is
characterised by enhanced osteogenic activity, whereas
the medullary space of the alveolar bone is typical of
aggravated osteoclast activity, which contributes to a
progressive decrease in volume fraction (bone volume/
total volume index, BV/TV) and mineral density.}720:21
Regarding alveolar bone height, two kinds of measure-
ments yield divergent outcomes: the distance from the
cementoenamel junction to the alveolar bone crest
(CEJ-ABC) indicates an increase, suggesting bone loss
in the unloading model,!® while the distance from the
mandibular canal level to the alveolar bone beneath
the root furcation, defined as mandibular height, also
shows an increase, suggesting bone formation in the
unloading model.!” Current studies mainly focus on
the effect of osteocytes and PDL on alveolar bone in the
presence of disrupted homeostasis. Studies revealing
the molecular mechanisms of how these phenotypes
are formed remain scarce, especially regarding how
osteoclasts accumulate in hypo-loading.
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Hyper-loading condition

Trauma from occlusion can be initiated when the mag-
nitude of forces exceeds the adaptive capacity of peri-
odontal supporting tissues (primary trauma) or when
the adaptive threshold is compromised, rendering the
remaining tissues incapable of withstanding physiologi-
cal occlusal forces (secondary trauma).!3! Clinically,
premature occlusal contacts and lateral displacement
of abutment teeth in partial dentures lead to excessive
force application on periodontal tissues. Nonaxial forces
(lateral or horizontal and torque or rotational) are more
likely to damage periodontal tissues compared to axial
forces.!3! Consequently, research focuses primarily on
orthodontic movement rather than vertical movement.
Xu et al'® developed a finite element (FE) model and an
in vivo murine model by extracting the maxillary sec-
ond molar (mxM2) and maxillary third molar (mxM3),
thereby directing the total force onto the mandibular
first molar (mnM1). This study aimed to analyse stress
distributions within the periodontium under normal
and hyper-occlusion conditions. The results indicated
that compressive strains are present in all three peri-
odontal tissues, with strain magnitudes increasing four-
fold under hyper-loading conditions.!®

Niver et al1®? noted that excessive loading signifi-
cantly enhances cementum hardness while promoting
apical cementum resorption. Wang et al'3® demon-
strated that force-loaded cementocytes modulate osteo-
clastogenesis and osteoclastic root resorption through
cell-to-cell communication via the Sphingosine-1-
phosphate (S1P)/S1PR1/Racl pathway.

Hyper-loading leads to increased collagen deposition
and a thicker, stiffer PDL.!%23 Utilising FE modelling, it
was illustrated that occlusal hyper-loading could lead to
mitotically active Axin2+ PDLSCs in stressed PDL areas,
resulting in collagen increase and a stiffer PDL adapted
to increased load finally using Axin2-CreER;R26R™TmG/*
mice.%?3 Besides, it has also been found that the
declined adaptive function of the PDL to masticatory
force during aging might be relative to the diminished
number of the Axin2+ PDLSCs.23 Lepr+ PDLSCs are sus-
tained as a quiescent population but can be activated
by mechanical stimulation. Zhang et all® proved that
hyper-loading promotes Lepr+ PDLSCs osteogenic dif-
ferentiation through Piezol-mediated mechanosensing
in the periodontium.

Hyper-loading activates bone resorption, the peak of
which is followed by a bone formation phase partly due
to the responses of Wnt-responsive stem/progenitor
cells in the alveolar bone, leading ultimately to an accel-
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erated rate of mineral apposition and an increase in
alveolar bone density.!® Kanzaki et al'!8 observed that
vertical compressive forces on PDL fibroblasts, dose-
and time-dependently upregulates RANKL expression
via increased prostaglandin E2 (PGE2) production, lea-
ding to a notable rise in osteoclast-like cell formation in
vitro. Goto et al®%3! demonstrated that hyper-occlusion
elevates C-C chemokine ligand (CCL) 2 expression in
PDL, enhancing chemotaxis and osteoclastogenesis and
synergistic function of CCL3 and CCL2 in mechanical
stress-dependent alveolar bone destruction.

In summary, unloading leads to tooth elongation
by apical cellular cementum deposition; sparse and
disorganised collagen fibres in the PDL; enhanced
osteogenic activity in the PDL-bone border with a gain
in alveolar bone height; and aggravated osteoclast activ-
ity in alveolar bone marrow with a progressive decrease
in BV/TV and mineral density. On the other hand,
hyper-loading leads to enhanced cementum hardness
and resorption; thicker and stiffer collagen fibres in
the PDL; and activated bone resorption, followed by a
bone formation phase, leading ultimately to increased
alveolar bone density.

Conclusion and prospects

In this review, we systemically summarised the cel-
lular interaction and molecular mechanism that play
key roles in regulating tooth root development and
homeostasis in the tooth eruption and post-eruption
stages mainly based on the mice models. In summary,
following the formation of the tooth crown, eruption
commences, characterised by axial movement and
initiation of root development until the tooth reaches
its final position in the oral cavity in contact with the
opposing tooth. This process involves cellular interac-
tions within the HERS, DP and DF that govern the de-
velopment of the tooth crown, root, periodontal tissues
and osteogenic and osteoblastic activity, thus contrib-
uting to tooth eruption. Even after a tooth attains its
functional position, eruptive movement persists due
to the remodelling of cementum, PDL and alveolar
bone, which are essential for maintaining periodon-
tium homeostasis. Mechanical stimuli, such as occlu-
sal hypofunction, or hyperfunction, can disrupt this
homeostasis, and potentially lead to overeruption or
occlusal trauma. To understand the cellular mechan-
ism mediating the post-eruptive tooth movement under
hypo-loading and hyper-loading conditions, we sum-
marized the advanced findings in recent studies using
the transgenic rodent molar models.
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Although transgenic rodent molar models are useful
tool for studying the mechanisms of tooth eruption,
additional large animal models and human subjects are
needed to determine the mechanism underlying these
phenotypes in the future. For example, the miniature
pig model has a diphyodont dentition similar to that of
humans. Using a miniature pig model, Wu et al'3*%13
validated that tooth eruption could release the accu-
mulated mechanical stress inside the mandible, and
the permanent tooth did not develop until the prima-
ryd tooth began to erupt. Using FE analysis models of
human teeth, Sarrafpour et al'3%137 proposed that both
eruptive and post-eruptive tooth movements result
from bone remodelling in the bony crypt and lamina
dura, driven by biomechanical forces. These new find-
ings enrich knowledge relating to tooth development
and eruption and suggest the significance of interdis-
ciplinary methods, such as biomechanical models, in
achieving a more comprehensive understanding of
tooth development and maintenance mechanisms.

Eruption disorders are commonly observed in the
human population, presenting as either isolated con-
ditions or part of complex syndromes, and invariably
lead to impaired mastication, speech, facial aesthetics
and social interaction.®”* Delayed tooth eruption (DTE),
the most frequent deviation from normal eruption tim-
ing, occurs when a tooth emerges into the oral cavity
at a time that diverges significantly from established
norms for various races, ethnicities and sexes.!3¢ DTE
may signal a systemic condition such as cleidocranial
dysplasia (CDD) or reflect altered craniofacial physiol-
ogy, such as physical obstruction due to premature loss
of primary teeth.13%13% Surgical exposure combined
with orthodontic intervention is the predominant treat-
ment approach. In orthodontic therapy, the technique
of removing impediments and exposing the crown is
termed fenestration. By affixing a bracket to the tooth
surface at the exposed “window” and employing ortho-
dontic traction, the impacted tooth can gradually return
to the normal dental arch, thereby restoring func-
tion.!#0 Conventional surgery, which involves direct tis-
sue cutting with a surgical blade, often results in bleed-
ing, infection and postoperative trauma. Consequently,
the development of early molecular diagnosis and a
therapeutic strategy for eruption disorders are crucial
and advantageous for affected populations.

Furthermore, it has been reported that up to 31%
of adults with occlusal disharmony or bruxism suf-
fer from disrupted periodontal equilibrium due to
irregular force loading.!® When teeth are no longer
in occlusal contact, such as after the extraction of an
opposing tooth, the balance of forces is disrupted,
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leading to overeruption, which can cause occlusal
interferences and malocclusion, posing challenges for
restoration.!*! Lindskog-Stokland et al'* observed that
both unopposed and opposed teeth exhibit overerup-
tion over a 12-year period, with statistically significant
greater overeruption in unopposed teeth. Craddock and
Youngson'#? noted that 83% of unopposed teeth are
prone to overeruption of up to 5.39 mm. Over-erupted
teeth necessitate treatment with an orthodontic intru-
sive force, which is typically generated through the
elastic deformation of the archwire.!*® This treatment
poses a significant clinical challenge due to its require-
ment for high technical precision and potential side
effects, including root resorption and reactive loading
on anchorage teeth.

A detailed understanding of the molecular and
cellular mechanisms underlying tooth eruption and
overeruption in pathological states is essential not only
for elucidating these biological processes but also for
guiding potential clinical interventions. Enhancing
comprehension of dental tissue development, disease
and dental stem cell biology is crucial for establishing
a robust foundation for future strategies and clinical
therapies in dental medicine.
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