Emerging Role of High Glucose Levels in Cancer Progression

and Therapy

Xin Jia CAI'2, Jian Yun ZHANG!2, Ao Bo ZHANG!2, Xuan ZHOU!2, He Yu ZHANG?3,

Tie Jun LI2

Extensive research has indicated that high glucose levels play an important role in cancer. A
high glycaemic index, glycaemic load diet, high sugar intake, high blood glucose and diabetes
mellitus all increase the risk of cancer. Various signals are involved in high glucose—induced
tumorigenesis, cancer proliferation, apoptosis, invasion and multidrug resistance. Reactive
oxygen species might be important targets in cancer progression that are induced by high
glucose levels. Drugs such as metformin and resveratrol may inhibit high glucose—induced
cancer. As the impact of high glucose levels on cancer progression and therapy is a novel find-

ing, further research is required.
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Many studies have shown that high glucose (HG) is
closely related to tumorigenesis and cancer progression.
HG is linked to abnormal glucose metabolism'-2. The
study of abnormal glucose metabolism is not only shed-
ding light on carcinogenesis, but is also revealing new
principles of the biochemistry of aberrant cancer cell
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proliferation, apoptosis and invasion, as well as multid-
rug resistance.

Foods that contain carbohydrates, which are digest-
ed, absorbed and metabolised quickly, are considered
high glycaemic index (GI) foods (GI > 70 on the glu-
cose scale). The glycaemic load (GL) is the product of
the GI and the total available carbohydrate content in
a given amount of food (GL = GI x available carbohy-
drate/given amount of food)?. High GI and GL diets are
associated with cancers of the upper aerodigestive tract
and digestive system!-2. Table 1437 lists specific risk
factors and cancer types. High GI diets are associated
with increased risk of oesophageal adenocarcinoma,
oesophageal squamous cell carcinoma, colorectal can-
cer, colon cancer, pancreatic cancer, renal cell carci-
noma, prostate cancer and bladder cancer?6:16:18-20.30,
High GL diets increase the risk of oesophageal squamous
cell carcinoma and mammary carcinomas, and gastric,
colorectal, rectal, colon, pancreatic, endometrial, ovar-
ian and bladder cancers®’-16-19.20.33,35.36. Makarem et
al® found that high sugar intake increases the risk of
cancer by 60% to 95%, and high consumption of sugary
beverages increases the risk by 23% to 200%. Dietary
sugar is positively associated with hepatocellular car-
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Table 1 Clinical evidence of high glucose involved in tumorigenesis and progression?-37.

Thyroid cancer

High level of fasting plasma glucose, diabetes mellitus

Zhan et al*

Oesophageal carcinoma
litus

Intake of sucrose, sweetened desserts/beverages, high Gl diet,
high GL diet, high level of fasting plasma glucose, diabetes mel-

Zhan et al4, Li et al®, Eslamian et al®

Breast cancer

High GL diet, high fat/high sugar diet, high level of fasting plasma
glucose, diabetes mellitus, high blood random glucose

Zhan et al*, Thompson et al”, Lambertz
et al®, Sieri et al%, Raza et al'?, Contiero
et all

Lung cancer

High level of fasting plasma glucose, diabetes mellitus

Zhan et al4, Luo et al'2

Liver cancer .
mellitus

High sugar diet, high level of fasting plasma glucose, diabetes

Zhan et al*, Fedirko et al'3, Healy et al'#

Biliary tract cancers, gall-
bladder cancer

High consumption of sweetened beverages

Larsson et al'®

Gastric cancer
cose

High carbohydrate intake, high GL diet, high fasting plasma glu-

Ye et al'6, Ikeda and Kiyohara!”

Colorectal cancer

High Gl diet, high carbohydrate intake, high sugar, high level of
fasting plasma glucose, diabetes mellitus

Sieri et al'819, Hu et al?0, Galeone et
al?!, Cui et al?2, Vulcan et al?3, Jung et
al?4, Shin et al?®

Pancreatic cancer . .
litus, high random plasma glucose

High Gl diet, high level of fasting plasma glucose, diabetes mel-

Zhan et al4, Hu et al2%, Rossi et al2®,
Nagai et al??, Pang et al?®, Er et al?9

Renal carcinoma High Gl diet

Zhu et al’%, Otunctemur et al®!

Prostate cancer

High Gl diet, high GL diet, high serum glucose

Hu et al?0, Arthur et al32

Bladder cancer
litus

High Gl diet, high GL diet, high consumption of refined carbohy-
drate foods, high level of fasting plasma glucose, diabetes mel-

Zhan et al*, Sieri et al'9, Augustin et al33

Cervical cancer .
fasting plasma glucose

High level of fasting plasma glucose, diabetes mellitus, high non-

Zhan et al*, Lee et al?*

Endometrial cancer High GL diet

Nagle et al®®

Ovarian cancer High GL diet

Nagle et al3¢

Primary central nervous
system lymphoma

High mean fasting plasma glucose (=126 mg/dL)

Debata et al®”

Leukemia

High level of fasting plasma glucose, diabetes mellitus

Zhan et al*

Lymphoma

High level of fasting plasma glucose, diabetes mellitus

Zhan et al*

cinoma!3. Larsson et al'> found that high consumption
of sweetened beverages was associated with increased
risk of biliary tract cancers, particularly gallbladder
cancer. Galeone et al?! determined that added sugars
were associated with increased risk of colon cancer. A
high sugar diet increased the risk of mammary cancer in
developing mouse pups and incidence of liver tumours
in mice®!4. High blood glucose increased the risk of
leukaemia, lymphoma and lung, breast, thyroid, gastric,
pancreatic, colorectal, colon, rectal, prostate, bladder
and cervical cancers*?:17:22-25323437 High blood glu-
cose is associated with cancer stage, aggressiveness,
mortality, recurrence and poor survival!9-12,27,32,34,37.39
Diabetes mellitus (DM) increased the risk of develop-
ing oesophageal, thyroid, liver, pancreatic, colorectal,
cervical and renal cancer and increased cancer aggres-
siveness®28:2931,
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HG and tumorigenesis

Table 249-104 and Fig 1 show the involvement of HG in
tumorigenesis and the progression of different cancers
through various molecules. HG induced O-GlcNAcyla-
tion, expression and transcriptional activity of Yes-asso-
ciated protein (YAP) led to YAP-dependent tumorigenic
phenotypes which contributed to liver tumorigenesis.
YAP was found to promote glucose uptake, the syn-
thesis of metabolites involved in the hexosamine bio-
synthesis pathway (HBP) and cellular O-GIcNAcyla-
tion, establishing a positive feedback loop®®. Qiao et
al®® found that HG induced advanced glycosylation
end product—specific receptor (AGER) activating HBP,
leading to enhanced O-GIcNAcylation of target pro-
teins, increasing the activity and stability of c-Jun via
O-GlcNAcylation of this protein at Ser73 to promote
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tumorigenesis. The c-Jun enhanced AGER transcription
thus established a positive feedback loop>®. HG-induced
thioredoxin-interacting protein (TXNIP) expression is
involved in oxidative stress via p38 mitogen-activated
protein kinases (MAPKSs) and extracellular signal-reg-
ulated kinase (ERK) pathways, which promoted cancer
development’®, Ito et al found that HG led to cancer by
increasing osteopontin (OPN) expression and oxidative
stress, accelerating cell proliferation”®. HG promoted the
acquisition of mesenchymal and cancer stem cell (CSC)
properties by activating transforming growth factor
B1 (TGF-PB) signalling and facilitated tumorigenesis®’.
Zhang et al'® found that HG increased mutagenesis in
lymphoblastoid cells via reactive oxygen species (ROS)
and null or mutant p53. Overexpression of chemotactic
cytokine ligand 5 (CCL5) accelerated diffuse large B cell
lymphoma formation in HG!'%¢, HG maintained hepatic
homeostasis by regulating the asialoglycoprotein recep-
tor!?7. Langen et al*! found that HG decreased the dose
absorption ratio (DAR) of 2-18F-fluorodeoxyglucose
(FDG) uptake in bronchial carcinoma.

HG and cancer cell proliferation

HG reduces Wnt antagonist Dickkopf 4 (DKK4) pro-
tein and promotes cancer cell proliferation by activat-
ing the wnt/B-catenin signal via wnt3a-ligand-mediated
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translocation of B-catenin into the nucleus®®-?%. HG
increases ROS levels, which stimulates proliferation
by inactivating the c-Jun-NH2-terminal kinase (JNK)
pathway®!. Rezende et al”? found that HG increased cell
proliferation by reducing AMPK activation and affect-
ing oxidative stress. HG promotes cell proliferation by
upregulating sterol regulatory element binding protein 1
(SREBP1); SREBPI1 also mediates autophagy via nega-
tive feedback®?. Han et al®3 found that HG promoted
proliferation via the induction of epidermal growth fac-
tor (EGF) expression and transactivation of EGF re-
ceptor (EGFR). Zhang et al*? found that HG stimulated
proliferation via phosphoenolpyruvate (PEP)-induced
poHis58-FAK signalling. HG stimulates proliferative
capacity by elevating O-GIcNAcylation and the expres-
sion of zinc finger protein 410 (APA1) and gap junc-
tion protein gamma 1 (GJC1)'%. Upregulation of glial
cell line—derived neurotrophic factor (GDNF) and RET
ligand-receptor interaction could play a role in the pro-
liferation promoted by HG®*. Gupta et al'% found that
HG induced proliferation via crosstalk between glyco-
gen synthase kinase 3p (GSK-3p) activation, histone
H3 phosphorylation and DNA methylation. Decreases
in protein kinase C (PKC)-BII mRNA and protein levels
could account for HG-stimulated proliferation!!?. Li et
al” found that HG induced miR-301a expression, sup-
pressed expression of p21 and smad4 and promoted G1/S

13



CAl et al

Table2 Molecular mechanisms of HG involved in tumorigenesis and progression0-104,

Cancer type
Nasopharyngeal carcinoma

Molecular mechanisms
Snail protein

Study
Zheng et al*0

Bronchial carcinoma

Dose absorption ratio of FDG uptake

Langen et al*!

Esophageal carcinoma

poHis58-FAK signalling

Zhang et al*?

Breast cancer

EMT, ROS, proinflammatory and pro-oxidant environment
characterised by the COX-2/PGE2 axis, Zn?* transportation,
NF-kB pathway; abrogate the effect of metformin, decrease
cellular sensitivity to 4-MU

Zhu et al*3, Viedma-Rodriguez et al*4, Matsui
et al*5, Flores-Lopez et al*6, Kallens et al*’,
Takatani-Nakase?*8, Nasir Kansestani et al*9,
Varghese et al®?, Wang et al®!, Pandey et al®2

Gastric cancer

Multiplicative interaction; attenuate effect of 5-FU

Lin et al%3, Zhao et al®*

Lung cancer

p53 pathway, RAGE-NOX-4 pathway, ERK/DAPK signal

Wang et al55, Liao et al56, Kuron et al®”

Liver cancer

O-GilcNAcylation, HBP, canonical Wnt signalling pathway,
oxidative stress, endoplasmic reticulum stress, EMT, YAP,
mitochondrial biogenesis, mitochondrial networking, ATP
synthase dimer stability, AMPK/mTOR pathway, STAT3 and
AKT signalling pathways, NF-kB/GLUT1 signal

Zhang et al®8, Qiao et al®*?, Chauhan et al®,
Chandrasekaran et al®162, Jiang et al®3,

Li et al®4, Liu et al®®, Domenis et al®®,

Lv et al®’, Li et al®®, Liu et al®®

Cholangiocarcinoma STAT3, O-GlcNAcylation

Saengboonmee et al’®, Phoomak et al”!

Colorectal cancer
bromopyruvate resistance

PTEN/Akt signal, EMT, MMP-9 signalling pathway, attenuate
effect of 5-FU, modify adriamycin-induced cancer cell death,

Ran et al’2, Chen et al3, Lin et al’4, Ma et
al’5, Ganefi et al’®, Ideno et al’”

Pancreatic cancer

Oxidative stress, p38 MAPK and ERK signalling path-
ways, mesenchymal and CSC-properties, JNK pathway,
autophagy, EMT, increase LDHA activity and HK2, PFKP
expression, AMPK signalling pathway, PI3K/AKT/GSK-3[3
signalling pathway, EGF/EGFR signalling pathway

Li et al”8, Ito et al”®, Rahn et al®, Luo et
al®!, Zhou et al®2, Han et al®3, Liu et al®?,
Li et al8586 Cheng et al®’, Duan et al®8,

Cao et al?9, Han et al%, Li et al®

Prostate cancer

Oxidative stress, G1/S cell cycle transition, upregulate
aerobic glycolysis, N-linked glycosylation, reduce docetaxel-
induced cell apoptosis, reduce expression of IGFBP2

Rezende et al%, Li et al?8, Huang et al%,
Fukami et al, Biernacka et al%:97

Bladder cancer Wnt/B-catenin signalling pathway

Gao et al%

Endometrial cancer

EMT, overexpression of B-catenin, inhibit STAT3 expression

Gu et al®9, Han et al'%, Zhou et al'®1, Wall-
billich et al192

B-cell ymphoma

chemotherapy effect

EMT, Wnt/B-catenin signalling pathway, abrogate etoposide

Wang et al'93, Shao et al%4

cell cycle transition and cell proliferation. HG induces
proliferation via STAT3 activation by increasing nuclear
STAT3, p-STAT3, cyclin D1, vimentin and MMP270.
Reema et al'!! found that HG promoted cell proliferation
and clonogenicity by activating pro-oncogenic signal-
ling. HG enhances the growth of cancer cell colonies by
activating Akt!!2,

HG and cancer cell apoposis

HG induces cell apoptosis through increased oxidative
stress by increasing the intracellular ROS level, lipid per-
oxidation, protein carbonyl and 3-nitrotyrosine (3-NT)
adduct formation and HG-mediated induction of alco-
hol dehydrogenase (ADH) and cytochrome P4502E1
(CYP2E1)%1-92, HG triggers endoplasmic reticulum
(ER) and oxidative stress, and integrates the signal-
ling cascades into apoptosis signal-regulating kinase
1 (ASK1) and causes phosphorylation and activation
of p38 and JNK MAPK signals, eventually leading to
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cell apoptosis®®. It was also argued that HG enhances
proliferation and inhibits apoptosis by JNK-mediated
downregulation of the p53 pathway and increases p38
MAPK phosphorylation®>!13, Zhu et al*3 found that
HG enhanced cell proliferation, migration and invasion
and suppressed apoptosis by increasing protein kinase C
delta (PKCd)-phosphorylation and proteasome activity.

HG and cancer cell invasion and metastasis

HG induces migration and invasion by monounsaturated
fatty acids (MUFAs), suppressing PTEN/Akt signal-
ling and regulating the epithelial-mesenchymal tran-
sition (EMT) mediated by stearoyl-CoA desaturase 1
(SCD1)72. HG upregulates high mobility group AT-hook
2 (HMGAZ2) and high mobility group box 1 (HMGB1)
to induce EMT via the Wnt/B-catenin signalling path-
way and production of hydrogen peroxide®103:114,
HG induces the binding of plasminogen to the cell sur-
face and promotes the activation of plasminogen and
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EMT*. HG activates the insulin-like growth factor 1
receptor (IGF1R)/Src axis and upregulates the expres-
sion of EMT, ERK, cyclin B1 and N-cadherin signalling
pathways by mediating the downregulation of miR-9
expression’>. HG increases the expression of glucose
transport protein 4 (GLUT4) and glucose transporter 12
(GLUT12) and promotes EMT by upregulating vascu-
lar endothelial growth factor (VEGF)/VEGF receptor
(VEGFR) and oestrogen receptors (ERs). GLUT4 also
supplies more energy for the growth of cancer cells by
increasing glucose intake*>%?. Lin et al’* found that HG
promoted the migration and invasion of cancer cells via
the signal transducer and activator of transcription 3
(STAT3)-induced matrix metalloproteinase-9 (MMP-9)
signalling pathway. HG increases expression of MMP-
9 and MMP-2, downregulates E-cadherin expression,
upregulates snail and induces higher malic enzyme
1 (ME1) activity*®100.115 T et al® found that HG
increased the production of ROS in a concentration-
dependent manner. HG induces superoxide dismutase-
dependent production of hydrogen peroxide, increases
the expression of urokinase plasminogen activator (uPA),
vimentin and fibronectin mediated by ROS and upregu-
lates haem oxygenase-1 (HO-1) expression via ROS or
the TGF-B1/PI3K/Akt signalling pathway*¢-86:116. HG
modulates O-GlcNAcylation through the expression
of glucosamine-fructose-6-phosphate amidotransferase
(GFAT) and vimentin’!. HG induces the establishment
of a proinflammatory, pro-oxidant environment char-
acterised by the cyclooxygenase-2 (COX-2)/PGE2
axis. Stromal-derived PGE2, acting as a stimulator of
interleukin-1 (IL-1) epithelial expression, promotes the
acquisition of motile properties by epithelial cells and
the maintenance of COX-2/PGE2-dependent inflam-
mation*’. Cheng et al®’ found that the accumulation of
hypoxia-inducible factor-la (HIF-1a) induced by HG
increased lactate dehydrogenase A (LDHA) activity and
hexokinase 2 (HK2) and phosphofructokinase platelet
type (PFKP) expression. Tomoka et al*® found that HG
induced Zn”" transport via zinc transporters ZIP6 and
ZIP10. Zhou et al'!'” found that HG promoted cell migra-
tion via aquaporin 3 (AQP3).

HG and angiogenesis

Liao et al>® found that HG increased the protein expres-
sion of receptor for advanced glycation end products
(RAGE) and nicotinamide adenine dinucleotide phos-
phate oxidase-4 (NOX4) and affected angiogenesis and
tumour metabolism via the RAGE-NOX-4 pathway. HG
increased proliferation and angiogenesis and decreased
apoptosis due to activation of the NF-xB pathway by
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increasing ROS*°. Huang et al®* found that HG led to
lysophosphatidic acid (LPA) synthesis and upregulated
aerobic glycolysis and VEGF-C production.

HG and cancer prognosis

Li et al® found the effect of maternally expressed gene
3 (MEG3) binding to miR-483-3p as molecular miR-
NA sponge. Overexpression of miR-483-3p suppressed
ERp29 expression. HG negatively regulates the expres-
sion of endoplasmic reticulum protein 29 (ERp29) by
inhibiting MEG3. ERp29 regulates the biological func-
tions of carcinoma cells through EMT, which leads to
a poor prognosis for hepatocellular carcinoma patients
with HG64. In gastric cancer, a poor prognosis was asso-
ciated with the multiplicative interaction of HG and long
non-coding RNA (IncRNA) SNHG853. Yang et al!!®
found that HG affected the outcome of colorectal cancer
patients by inhibiting miR-16 expression and the expres-
sion of its downstream genes Myb and VEGFR2.

HG and abnormal molecular expression in cancer
cells

Liu et al® found that HG enhanced the expression and
0O-GIcNAcylation of angiomotin (AMOT) and stimulat-
ed nuclear accumulation, transcription activity, interac-
tions with transcription factors and transcription of target
genes of YAP via AMOT. HG induces overexpression
of B-catenin and subsequent transcription of the target
genes by upregulating HBP and O-GlcNAcylation!0!,
HG promotes the Wnt-stimulated formation of a lym-
phoid enhancer factor (LEF)-1/p-catenin complex that
is associated with acetylase p300 and displaces SIRT1
deacetylase, leading to increased P-catenin acetyla-
tion, its nuclear accumulation and transcription activa-
tion119. HG increases expression of inhibitor factor 1
(IF1), decreases the level of transcriptional coactivator
PGC-a and reduces mitochondrial biogenesis and ATP
synthase dimer stability®®. Duan et al®® found that HG
inhibits the expression of MHC class I chain-related pro-
tein A/B (MICA/B), promotes the expression of Bmil
and weakens the cytotoxicity of natural killer cells in
pancreatic cancer, contributing to immune escape by
inhibiting the AMPK signalling pathway and activating
the AMPK-Bmil-GATA2-MICA/B axis. Fukami et al®>
found that HG induced N-linked glycosylation-mediated
functional upregulation and overexpression of Cav3.2.
Lee et al'2 determined that HG increased transcrip-
tional activity and repressed the methylation of protein
phosphatase 1 regulatory subunit 3C (PPP1R3C), and
Briata et al'?! found that HG reduced c-myc expression.
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HG and cancer chemoresistance or radioresistance

HG attenuated 5-fluorouracil (5-FU)—induced tumour
growth inhibition by decreasing cell death and increas-
ing DNA replication®*”>. HG reduced the effect of
metformin on cancer cell proliferation, cell death and
cell cycle arrest and lost efficacy in inhibiting the
mTOR pathway>%!!!. HG inhibited drug-induced p53
Ser46 phosphorylation, and mutual unbalance between
p53-dependent apoptosis and damage-regulated
autophagy modulator (DRAM) modified adriamycin
(ADR)-induced cell death’®!122, Kwon et al’’ found
that HG-induced overexpressed inositol 1,4,5-trispho-
sphate receptor interacting protein (DANGER) bound
to the death domain (DD) of death-associated protein
kinase (DAPK) and inhibited ERK/DAPK-induced
death, which accounted for radioresistance. HG sup-
pressed bromopyruvate uptake and bromopyruvate-
induced cell death by downregulating bromopyruvate
carrier monocarboxylate transporter 1 (MCT1)”7. HG-
induced BCL-6 overexpression abrogated the effect of
etoposide chemotherapy-induced cell death!%*, Wang et
al’! found that HG decreased carcinoma cellular sensi-
tivity to 4-methylumbelliferone (4-MU)-inhibited cell
proliferation. Biernacka et al®® found that HG reduced
docetaxel-induced cell apoptosis by upregulating insu-
lin-like growth factor binding proteins 2 (IGFBP2). Liu
et al'?3 found that HG upregulated side population (SP,
a key factor contributing to drug resistance) cells medi-
ated by the Akt pathway. Nishiwada et al'>* found that
1% concentration sevoflurane in HG enhanced cell pro-
liferation.

HG and cancer therapy

HG could reduce the sensitivity of cancer cells to doc-
etaxel through a reduction in the expression of IGFBP2;
however, metformin inhibits cell proliferation, reduc-
es cell survival, promotes apoptosis of carcinoma cell
induced by HG through activation of the AMPK/mTOR
pathway, inhibits STAT3 and its target proteins stimu-
lated by HG and negates the HG-mediated reduction in
sensitivity to docetaxel®”-97-192, Resveratrol played an
important role in suppressing HG-driven ROS-induced
cancer progression by inhibiting the ERK, p38 MAPK,
STAT3, and AKT signalling pathways®-%°. Indometha-
cin inhibited HG-induced proliferation and invasion by
upregulating E-cadherin and activating the PI3K/AKT/
GSK-3p signalling pathway®’. Curcumin suppressed
HG-driven EGF-induced invasion and migration by
inhibiting the EGF/EGFR signalling pathway and its
downstream signalling molecules, including ERK and

16

Akt?!. Aspirin inhibited cell proliferation by modulating
abnormal glucose metabolism via NF-xB (or NF-«xB/
HIF10)/GLUT]1 signalling®. HG increased the cytotox-
icity induced by carboplatin and 5-FU and decreased
their IC50 because of the synergistic effect of the HG-
mediated reduction in P-glycoprotein (P-gp) levels as
well as increased drug accumulation, which enhanced
ROS levels*.

Conclusion

In summary, HG induced by various signals increases
the risk of cancer. Studies of the role played by HG
in cancer progression and therapy have revealed new
connections between nutrient utilisation and the tumori-
genic state. As interest in cancer and glucose metabolism
grows, combining therapies of HG inhibitors with other
modalities may be effective.
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