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Since the first dental resin composites were devel-
oped, many efforts to improve their clinical perform-

ance have been undertaken1. Research on resin matrix is
mainly based on the development of new monomers,
whereas studies on the filler content focus on loading2,
particle size, and silanation3. Such studies are of high

importance because the mechanical properties and poly-
merisation shrinkage depend highly on the concentration
and particle size of the filler. However, further signifi-
cant improvements are still needed in order to use com-
posite resins safely in posterior restorations. Filler tech-
nology has led to the development of composite resins
characterised by containing zirconia or silica nanoparti-
cle fillers of approximately 25 nm size and nanoaggre-
gates of approximately 75 nm size.

Glass fibres for reinforcing dental polymers have
been investigated for over 30 years4. They have docu-
mented reinforcing efficiency and good aesthetic quali-
ties compared with carbon or aramid fibres5. The effec-
tiveness of fibre reinforcement is dependent on many
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gradually added using a high-speed mixing machine. Three filling composite resins (Z250,
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fibre-reinforced composite (FRC; everStick and Ribbond), and prefabricated ceramic filling
insert (Cerana class 1) were tested in this study. Enamel and dentine were used as controls.
The specimens (n = 3 per group) were polished and water-stored at 37°C for 24 h before test-
ing. A universal testing machine was used for testing Vickers microhardness. All results were
analysed statistically with one-way analysis of variance (ANOVA).
Results: ANOVA revealed that nanofiller fraction had a significant effect (P < 0.05) on the
Vickers microhardness of the short-fibre composite resin. No statistically significant differ-
ence was found between FC composite resin and conventional filling composite resins (Nulite
and Z250) (P > 0.05). Ribbond FRC had a lower surface microhardness than everStick FRC
(P < 0.05).
Conclusion: The use of high nanofiller fraction with short-fibre fillers in IPN polymer matrix
yielded increased surface microhardness.
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variables, including the resins used, the quantity of fibres
in the resin matrix6,7, the length of the fibres6, the form
of the fibres8, the orientation of the fibres9, the adhesion
of the fibres to the polymer matrix10, and the impregna-
tion of the fibres with the resin11. Short, random fibres
provide an isotropic reinforcement effect in multiple di-
rections instead of just one or two directions, as de-
scribed by Krenchel12.

Poly(methyl methacrylate) (PMMA) and dimethacry-
late-based semi-interpenetrating polymer network (semi-
IPN) matrix has been established as a polymer matrix in
denture base materials13. Also, some products of fibre-
reinforced composite (FRC) use semi-IPN polymer in
the matrix14.

Early experiments on the use of experimental semi-
IPN matrix in combination with short E-glass fibres in
restorative filling composite show enhancement in me-
chanical properties and load-bearing capacity15,16.
However, dental restorative composite resins with semi-
IPN polymer matrix in combination with short glass fi-
bres and particulate nanofillers have not been evaluated
to our knowledge.

One important physical property of a restorative ma-
terial is surface hardness17. The hardness of a material
is a relative measure of its resistance to indentation or
penetration when a specific, constant load is applied. It
has been reported that microhardness is an adequate in-
dicator of the degree of conversion or polymerisation of
composite resin. The degree of polymerisation may be
related to the clinical performance of resin restorative
materials.

Therefore, the objective of the study was to provide
an experimental filling material that combines short
glass fibre, semi-IPN and nanofiller technologies.
Specifically, this study investigates the effect of
nanofiller fraction on surface hardness of glass-fibre-
reinforced filling material. In addition, the surface hard-
ness of different commercial restorative materials has
been evaluated.

Materials and Methods

Materials
Eight commercial restorative materials (three filling
composite resins, resin-modified glass ionomers
[RMGIs], amalgam, two fibre-reinforced composites
and prefabricated ceramic filling insert) were tested in
this study. They are listed in Table 1.

Dimethacrylate (bisphenol A-glycidyl dimethacrylate
[BisGMA] 67% and triethyleneglycol dimethacrylate
[TEGDMA] 33%) resin consisting of nanofillers (SiO2,
20 nm in size) of various weight fractions (Hanse

Chemie, Germany) (Table 2) and E-glass fibres with
BisGMA–PMMA (MW 220,000) resin matrix (ever-
Stick, StickTech Ltd, Turku, Finland) were used. In ad-
dition, radio-opacity fillers of BaAlSiO2 (3 ± 2 μm in
size; Specialty Glass, USA) were incorporated in the
resin system. Before the BaAlSiO2 filler particles were
incorporated into the resin matrix, they were silane treat-
ed using a previously defined technique18. Enamel and
dentine were used as control groups.

Methods

Experimental fibre composite (FC) resins were prepared
by mixing 22.5 wt% of short E-glass fibres (3 mm in
length and 15 μm in diameter) to 22.5 wt% of resin ma-
trix with various weight fractions of nanofillers (0, 10,
20, 30, 40, 50 wt%) and then 55 wt% of BaAlSiO2 ra-
dio-opacity fillers were added gradually to the mixture.
The classification of the experimental test groups ac-
cording to the various filler contents is given in Table 2.
The mixing was carried by using a high-speed mixing
machine for 5 min (SpeedMixer, DAC, Germany, 3,500
rpm). The dimethacrylate-based resin matrix with PM-
MA forms a semi-IPN polymer matrix for the compos-
ite resin of FC.

Five specimens for each material (2 mm thickness
ring with a diameter of 6.5 mm) were photo-polymerised
for 40 s using a light source with an irradiance of 800
mW/cm2 (Optilux-500, Kerr, CT, USA). After polymeri-
sation, specimens were polished (grit up to 4,000 FEPA)
at 300 rpm under water cooling using an automatic
grinding machine (Struers Rotopol-11, Copenhagen,
Denmark). Specimens were water stored for 24 h at 37°C
before testing. Microhardness measurements (10 points
for each specimen) were carried out with universal Vick-
ers device (wsDuramin, Struers). A load of 1.96 N was
applied for 10 s on their surface. The length of the diag-
onal of each indentation was measured directly using a
graduated eye-lens. The Vickers hardness number
(VHN) is obtained using the following equation:

where H (kg/mm2) is the Vickers hardness, P (g) is the
load and d (μm) is the length of the diagonals17.

The surface microhardness data were analysed statis-
tically using analysis of variance (ANOVA) at the P <
0.05 significance level with SPSS (version 13, Statisti-

1854.4P

d2
H =
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cal Package for Social Science, SPSS Inc, Chicago, IL,
USA), followed by Tukey’s post hoc analysis to deter-
mine the differences among the groups.

Results

The mean values of microhardness for the groups test-
ed, with standard deviation, are summarised in Figs 1
and 2.

ANOVA revealed that nanofiller fractions had a sig-
nificant effect (P < 0.05) on the microhardness of the
short-fibre composite resin. No significant difference in
the VHN was found between experimental FC compos-
ite resin (77 ± 13) having 50 wt% nanofillers (group
FC5) and groups made from Nulite (71 ± 10), everStick
(77 ± 16) and Z250 (82 ± 4) composite resins (P > 0.05)
(Fig 2). The highest VHN value was obtained with spec-
imens made from Cerana class 1 (466 ± 47), and speci-
mens made from Ribbond had the lowest values (25 ± 8).

Discussion

Microhardness testing of materials appears to represent
one of the most straightforward tests used for character-
isation of restorative dental materials. It gives an indica-
tion of the resistance to penetration when indented by a
hard asperity19.

Recently, it has been shown that the use of a semi-IPN
matrix in combination with short glass fibres in restora-
tive filling composite resin has given encouraging re-
sults15,16. The use of semi-IPN matrix lowers the cross-
linking density of the resin matrix, which leads to a de-
crease in the VHN of the composite resin. Incorporating
nanofillers into composite resin reduces the fraction of
the lower cross-link density monomers, leading to an in-
crease in surface hardness. Thus, we hypothesised that
using high-fraction nanofillers with short glass fibres
and a semi-IPN resin matrix could improve the surface
hardness of composite resins.

Table 1 Materials used in the study

Material 

FC
Z250
Grandio
Nulite
Fuji II LC
Amalgam(ANA 2000)
everStick
Ribbond
Cerana class 1

Batch

20061003
630615
021703
540 1042
95127-3468
2060727-ES-158
9541
141002-26XL

Manufacturer

Experimental short fibre composite
3M Dental Products, St Paul, MN, USA
Voco, Cuxhaven, Germany
Hornsby NSW, Australia
GC Corporation, Japan 
Nordiska Dental AB, Ängelholm, Sweden
StickTeck Ltd, Turku, Finland
Ribbond Inc, Seattle, WA, USA
Nordiska Dental AB, Ängelholm, Sweden

Table 2 Classification of fibre composite resin test groups used in the study
according to their filler content and composition (n = 3, per group)

Group

FC0
FC1
FC2
FC3
FC4
FC5

Fibres
(wt%)

22.5
22.5
22.5
22.5
22.5
22.5

Nanofillers (wt%) in the resin
matrix/resin mixture (22.5 wt%)

0/22.5
10/22.5
20/22.5
30/22.5
40/22.5
50/22.5

Micrometre-scale fillers (wt% of the
resin–nanofiller–fibre mixture)

55
55
55
55
55
55



C
opyrig

h
t

b
y

N

o
tfor

Q
u

i
n

te
ssence

N
ot

for
Publication

This study showed that the VHN increased by increas-
ing the quantity of nanofillers (Fig 1). As apparent in Fig
2, there were significant differences between the VHN of
different restorative materials. However, microhardness
of short-fibre-reinforced composite resin was at the same
level as the commercial hybrid composite resins (Nulite
and Z250). On the other hand, Grandio showed a higher
VHN than other composite resins because of the high
filler content. In general, our results are in agreement
with previous laboratory studies, which showed that com-
posite materials with high filler loading resul-ted in in-
creased surface hardness of the materials17. However,
some of the differences could also be explained due to
differences in the polymer matrices and the filler type
materials we used. It was not a surprise that Cerana (pre-
fabricated ceramic filling insert) had considerably high-
er VHN values than enamel, because the theoretical den-
sity of sintered alumina particles is around 98.8 vol%.
Enamel is the hardest substance in the human body and
consists of  92–96 vol% of relatively large hydroxyapatite
crystals. On the other hand, human dentine is composed
of only 45 vol% apatite minerals, distributed in an organ-
ic matrix of collagen fibre and fluid.

Ribbond (an ultra-high molecular weight polyethyl-
ene FRC) had a lower microhardness than everStick
(electrical-glass FRC). It is likely this is due to inade-
quate interfacial adhesion between the fibres and the
polymer matrix. It is also possible that the impregnation
of the ultra-high molecular weight polyethylene fibres
by the resin was inadequate. Vallittu has discussed these
problems previously20,21. It is proposed that the combi-
nation of inadequate interfacial adhesion and inadequate
impregnation may hinder stress transfer from the poly-
mer matrix to the fibre reinforcements.

RMGIs showed lower VHN values than composite
resins and was at same level to dentine. Since RMGIs
contain a resin component, the surface of the sample will
be resin rich due to filler particle migration towards the
bulk of the material. This resin-rich layer often remains
only partly polymerised due to the oxygen inhibition of
polymerisation22. Previous studies have shown that
RMGIs stored in water reached maximum surface hard-
ness over 1 to 7 days and maintained this value for up to
1 year22,23.

In order to simulate clinical conditions, aging
processes, such as alternate thermal stress, mechanical
stress, wear, and water storage, should also be taken in-
to consideration. A clinical study reported by Van Dijken
showed that a restorative composite resin (Nulite) with
microfibres suffers extensive wear24, which can be part-
ly explained by the fibre length used being well below
the critical fibre length. Using a fibre fragmentation test,
it was found that the critical fibre length of E-glass in a
BisGMA polymer matrix varies between 0.5 and 1.6
mm25. In order for a fibre to act as an effective reinforce-
ment for polymers, stress transfer from the polymer ma-
trix to the fibres is essential26–28. This is achieved by
having a fibre length equal to or greater than the critical
fibre length26,28. Therefore, the length of the fibres used
as fillers in this study was chosen to be 3 mm, thus ex-
ceeding the critical fibre length. It is well known that the
hardness of dental material is not useful to predict the
abrasiveness of these products against human enamel.
Thus, an in vitro wear evaluation of short glass-fibre
composite resin with high nanofiller fraction and semi-
IPN resin matrix will be evaluated in a further study.

Methodologically, one limitation of the present study
is related to the testing of water-stored specimens after

Fig 1 Mean surface microhardness of fibre composite resin
tested groups with different weight fractions of nanofillers.
Vertical lines represent standard deviations. Horizontal line
above the bars indicates groups that do not differ statistical-
ly from each other.

Fig 2 Mean surface microhardness of the materials tested.
Vertical lines represent standard deviations. Horizontal line
above the bars indicates groups that do not differ statistical-
ly from each other.
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1 day only. Several studies have already shown the influ-
ence of water saturation on the microhardness of com-
posite resins and other materials2. In a previous study,
we showed that water sorption of FC composite resin
was similar to that of a conventional filling composite15.
Water storage could decrease the surface hardness of the
specimens. In the polymer matrix, water acts as a plas-
ticiser, increasing free volume and decreasing the glass
transition temperature of the polymer matrix29,30. It has
also been reported previously that there is a potential de-
teriorative effect of water on the interfacial adhesion be-
tween the polymer matrix and the glass fibres through
rehydrolysis of the silane coupling agent29.

Based on the results of this study and our previous
published data of short-fibre composite resin, it is sug-
gested that experimental FC composite could be used
successfully to fulfil the requirements for the ideal pos-
terior restoration. However, it should be emphasised that
clinical trials are necessary in order to evaluate the use-
fulness of FC composite resin in dental restorations.

Conclusion

E-glass FRC composite resin with a semi-IPN polymer
matrix and nanofillers has similar microhardness values
to conventional particulate filler restorative composite
resins.
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