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their interaction4-7. As only a few people exposed to the 
same risk factors suffer from NSCL/P, genetic suscepti-
bility is considered to play a crucial role. 

Most genomic variation can be attributed to single
nucleotide polymorphisms (SNPs), which are useful
markers for genetic association studies of disease sus-
ceptibility or adverse drug reactions8. To date, various 
genetic approaches have been applied to identify genetic
factors that put individuals at risk of NSCL/P. Initially,
candidate gene association studies were performed to 
test genetic variants in genes relevant to NSCL/P9. 
Later, the associations of SNPs in the pathway with
the risk of NSCL/P were investigated using a candidate 
pathway association study approach10. Genome-wide
association studies (GWASs) have since successfully
identified numerous loci associated with NSCL/P11. A 
possible polygenic threshold model of inheritance is
supported by the identification of common genetic risk 
variants for NSCL/P from GWASs and SNP heritability 
estimates of around 30%12. All these studies have facili-
tated understanding of the pathogenic mechanisms of 
NSCL/P and improved clinical management of patients.
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Non-syndromic cleft lip with/without cleft palate (NSCL/P) is one of the most common birth
defects in humans with an overall prevalence of one per 1000 live births. Due to genetic and 
environmental influences, the fusion of the lips or palate may be interrupted at any stage and 
cause a cleft. Over decades, dozens of susceptible genes and loci have been identified using 
multiple genetic approaches. Our group has collected samples of NSCL/P patients since 2008
and established the biobank. We discovered numerous susceptible loci related to the occur-rr
rence of NSCL/P in the Chinese population, such as 16p13.3, 1q32.2, 10q25.3 and 17p13.1. 
In addition, we performed functional studies on related loci and genes by using molecular 
biology, cell biology, animal models and other methods to provide a basis for the construction
of the NSCL/P genetic map in the Chinese population and help to implement individualised 
prophylaxis and treatment. Future efforts will focus on identifying functional variants, inves-
tigating pathways and other interactions, and including phenotypic and ethnic diversity in 
research.
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Non-syndromic cleft lip with or without cleft palate
(NSCL/P) is a common human birth defect characterised 
by craniofacial abnormality due to incomplete separ-
ation between the nasal and oral cavities1. Its prevalence 
ranges from 1/700 to 1/1000, depending on ethnicity and 
geographical area2,3. Common risk factors for NSCL/P 
include genetic risk factors, environmental exposure and 
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The present review summarises the approaches to,
advances in and future prospects for genetic variant 
discovery and functional interpretation. We then com-
plement our description with examples from suscepti-
bility loci identified in our study where the use of these 
approaches has advanced our biological understanding
of NSCL/P. In addition, we assess the extensive genetic, 
molecular and cell biological evidence that have impli-
cations for studies on NSCL/P.

Candidate gene association studies in NSCL/P 

Candidate gene association studies have proven to be an
effective approach in genetic association studies based 
on case-control populations to identify risk variants
involved in specific diseases, which have the advantages 
of being cheap and easy to implement quickly13. These
studies on NSCL/P always begin with selection of a
putative candidate gene, which could play a critical role 
in the development of cleft lip and palate under inves-
tigation14. To date, there is a large amount of literature
and experimental and sequencing data that can be used 
to can be used to identify candidate genes for NSCL/P.
For example, p63 as a Wnt signalling target was found to
be involved in midfacial development in mice15. FOXE1
mutations were detected to be associated with Bamforth-
Lazarus syndrome, characterised by thyroid dysgenesis 
and cleft lip16. To explore the functional significance 
and potential association trait of the candidate genes
of NSCL/P further, selection of a putative candidate 
gene was followed by evaluating and screening poly-
morphisms, usually the representative SNPs called tag-
ging SNPs17 or/and functional SNPs, which affect gene 
transcription. Finally, the selected SNPs were genotyped 
in the experimental population, including cases and con-
trols, to make an association analysis between SNPs and 
the risk of NSCL/P.

Thus far, candidate gene association studies have
successfully identified a group of specific variants and 
genes that may lead to the development of NSCL/P18-21.
In recent years, our group has also carried out candidate 
gene association studies to identify additional SNPs that 
pose risks and evaluated their potential as biomarkers
in the future.

IRF6

The first genetic variant associated with NSCL/P was
either valine or isoleucine at amino acid position 274
(V274I) located in IRF69. IRF6 has been reported to be 
involved in Van der Woude syndrome, accompanied by
the occurrence of CLP or deformity of the lower lip22.

Zucchero et al9 carried out transmission-disequilibrium
testing (TDT) and case-control analyses in 8003 indi-
viduals from 1968 multiethnic families and detected that 
V274I in IRF6 was the risk genetic variation related to 
NSCL/P. In 2010, our group also genotyped polymorph-
isms in IRF6 and evaluated their associations with
NSCL/P in a Chinese Han population23. We determined 
that rs2235371 and rs642961, which regulated levels of 
IRF6 mRNA and protein, significantly affect the suscep-
tibility of NSCL/P.

MSX1

MSX1 is regionally expressed in the early critical
stage of craniofacial development and participates
in craniofacial and nervous system development as a
transcriptional suppressor24. In addition, Msx1-defi-
cient transgenic mice have been found to show general 
craniofacial deformity, including cleft palate, alveolar 
bone abnormalities and dental dysplasia25. Ma et al26

selected four functional SNPs in MSX1, which were
-

ated their susceptibility to NSCL/P among 602 cases and 
605 healthy controls from a Chinese Han population.

related to the development of NSCL/P by affecting the
binding of miR-3649 to MSX126.

MYH9

MYH9 has been reported to play an important role in
the development of palatal fusion27. MYH9 is a can-
didate gene and it is therefore worth exploring which 
SNPs on it are associated with the risk of NSCL/P and 
how these sites regulate gene expression to cause the
disease; thus, we selected independent functional SNPs 

SNP database and HapMap Project database. We made 
a further biological functional prediction for these sites
and four SNPs were included. Through the two-stage 
population sample verification, including 1275 cases 
and 1295 controls, followed by a series of functional 
experiments, rs12107 in the 3’UTR and rs2269529 in 
the exon region were identified to be related to NSCL/P 
by upregulating expression of MYH928.

Candidate pathway association studies in NSCL/P

The biological processes that occur during the devel-
opment of human embryos are carried out by several 
pathways in a tightly regulatory manner. At the pheno-
typic level, dysregulation of these processes could lead 
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to malformations during the early embryonic develop-
ment, such as NSCL/P6,29. Diverse signalling cues and 
attendant proteins work together during closure of the lip
and growth of the palatal shelves across embryogenesis,

-
ways (Fig 1)10,30-32. Pathway studies have been based 
on the association analysis between tag SNPs and the
risk of NSCL/P defining SNPs related to NSCL/P on
pathway genes.

WNT pathway

Vijayan et al33 performed an association analysis based 
on 20 SNPs on WNT pathway genes in 471 individ-
uals with NSCL/P and 504 unrelated control individ-
uals of Caucasian ethnicity, and a significant association
was found between GSK3B rs13314595 genotypes and 
NSCL/P. This study was the first to show the associ-
ation between GSK3B and NSCL/P and confirmed the 
role of additional WNT pathway genes as candidates for 
NSCL/P33.

Epidermal growth factor receptor (EGFR) pathway

EGFR was reported to regulate cell migration in the 
embryonic developmental phase34,35, which was closely 
related to the development of craniofacial structure36.
Our group has conducted an in-depth exploration of 
genetic variation in biological pathways37. Li et al37

selected a superpathway of endocytic trafficking of 
EGFR and investigated the associations of SNPs in the 

pathway with the risk of NSCL/P. The study suggested 
that the genetic variants of SHTN1, AP2B1 and NTRK1
in the investigated superpathway showed statistical evi-
dence for association with the risk of NSCL/P37.

Autophagy pathway

In addition to selecting pathways that have been reported 
to be significantly related to lip and palate development, 
we also selected pathways related to other diseases and 
that are involved in early embryonic development for in-
depth research. As a conserved lysosomal degradation 
process in eukaryotes, autophagy protects cells from 
different kinds of stress, such as starvation, hypoxia 
or exposure to toxic molecules38. In the early develop-
ment stage, autophagy has been shown to be essential
in the transition of oocytes to embryos, postpartum sur-
vival, development, differentiation and ageing in mouse
models39. Lou et al40 conducted a two-stage case-control
study with 2027 NSCL/P cases and 1843 controls to
explore associations between genetic variants in the
autophagy pathway and the risk of NSCL/P, and found 
that rs2301104 in the autophagy pathway gene HIF1A 
was associated with susceptibility to NSCL/P. Moreover,
the authors explored the functional roles of the SNP 
and the gene through in vivo and in vitro experiments 
and found that the risk allele of rs2301104 reduced the 
enhancer activity and expression of HIF1A, and also 
that knockdown of HIF1A affected cell functions, which 
may increase susceptibility to NSCL/P40.

Fig 1  Main molecular
pathways involved in
NSCL/P. Susceptibility 
genes in NSCL/P affect
different signalling path-
ways, including WNT, 
TGF , BMP, and FGF sig-
nalling pathway.
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GWAS of NSCL/P

GWASs are dedicated to detecting the associations
between SNPs and complex traits and diseases in sam-
ples among populations41. An increasing number of 
SNPs have been reported to participate in the develop-
ment of traits and diseases since the first GWAS for 
age-related macular degeneration (AMD) was published 
in 200542.

To date, the National Human Genome Research
Institute (NHGRI) Catalog43 of published GWASs
has identified 15 studies (Table 1)12,44-57 including 
101 newly discovered SNPs relevant to NSCL/P with 
P < 5 × 10-8. In 2009, Birnbaum et al44 conducted the
first NSCL/P GWAS on a cohort of the European popu-

lation and provided evidence that 8q24.21 (rs987525),
which lay in a gene desert, was a major susceptibility
locus for NSCL/P. Several other GWAS around this
time also identified important loci45-49. In 2015, our 
group conducted the first NSCL/P GWAS in a Chinese
population, followed by two stages of replication.
There were 2577 cases and 3193 controls in total. We
identified 16p13.3 (rs8049367 between CREBBP and 
ADCY9) as a new susceptible locus for NSCL/P and 
confirmed that the reported loci at 1q32.2, 10q25.3,
17p13.1 and 20q12 were effectual50. Then, a 2017
GWAS and meta-analysis on the Chinese population
linked both previously known and novel SNPs and 
genes with NSCL/P52.

Table 1 GWASs identified newly discovered SNPs associated with NSCL/P.

PMID Newly discovered SNPs with P < 5 × 10-8 Population Study

19270707 rs987525 European Birnbaum et al44

19656524 rs17085106 European Grant et al45

20023658 rs227731 rs7078160 European Mangold et al46

20436469 rs10863790 European Beaty et al47

21618603 rs2294426 European Beaty et al48

22863734
rs560426 rs8001641 rs7632427 rs861020

European Ludwig et al49
rs13041247 rs742071 rs7590268 rs12543318

25775280 rs2235371 rs8049367 rs4791774 Chinese Sun et al50

28054174

rs9439714 rs72728734 rs12944377 rs1588366

Asian
European
Latino or African

Leslie et al51

rs66515264 rs6540559 rs9911652 rs6029258
rs3789432 rs12070337 rs55658222 rs75477785
rs9439713 rs6072081 rs10886040 rs11841646
rs7566780 rs76479869 rs11072494 rs1109430
rs17242358 rs1234719

28087736 rs6740960 rs4901118 rs3746101
European
Asian

Ludwig et al12

28232668

rs7552 rs2064163 rs12229654 rs11066150

Chinese
European
Asian

Yu et al52

rs481931 rs6585429 rs2304269 rs957448
rs10512248 rs2872615 rs287982 rs9381107
rs12681366 rs12229892 rs6495117 rs2283487
rs1907989 rs13317 rs908822 rs7871395
rs3741442 rs705704 rs9545308 rs7148069
rs1243572 rs2289187 rs1838105 rs6129653
rs2006771 rs78212183 rs10462065 rs7017252

30067744 rs255877 rs2522825 European Howe et al53

30277614 rs72804706

African
Asian
Latin American
North American

Carlson et al54

30452639 rs80004662 rs113691307 African Butali et al55

31609978

rs12405750 rs17820943 rs730570 rs765366

Chinese Huang et al56
rs4752028 rs57700751 rs625882 rs116910459
rs730643 rs698406 rs1009136 rs3468
rs4646211 rs8061677 rs78669990 rs72741048
rs72688980 rs6791526

32373937 rs8071332 rs8076457 rs1215465 rs3138512 European Dardani et al57
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As the lip formation processes differ from those for 
the palate, as do their respective causes and risk factors,
Huang et al56 aimed to dissect the risk factors underly-
ing the pathogenesis of cleft lip only (CLO) and cleft 
palate only (CPO) using 6986 cases and 10,165 con-
trols. A total of 18 genes/loci were responsible for sub-
types, including nine for CPO, seven for CLO and two 
for both conditions. Interestingly, an opposite effect of 
the genetic variants was observed in the IRF6 gene for 
CPO and CLO. The latest GWAS of NSCL/P not only
performed a meta-analysis, but also sought to evaluate 
the causal effects of genetic liability to NSCL/P on
educational attainment and intelligence57.

GWAS offers great advantages in identifying novel
variant–trait associations which lead to the discovery of 
novel biological mechanisms and provide insight into
ethnic variation of complex traits58; however, GWAS 
cannot necessarily specify which variant at a locus is
the ‘causal variant’ and identify all genetic determinants 
of complex traits59. Thus, post-GWAS strategies have 
been proposed to identify the causal variants and under-
stand their biological consequences.

Hah et al60 conducted a targeted sequencing study 
of 13 NSCL/P GWAS loci in 1409 trios from European
and Asian ancestries and found that rs227727 near the
NOG gene disrupted enhancer activity, a mutation in 
PAX7 disrupted the DNA binding of the encoded TF
in vitro and another mutation disrupted the activity of 
a neural crest enhancer downstream of FGFR2 both
in vitro and in vivo. In our study, rs2262251 (G>C) in
lncRNA RP11 462G12.2 was in high linkage disequi-
librium (LD) with rs8049367, which was identified 
in our previous GWAS on NSCL/P. Through a series
of experiments, we found rs2262251 was involved in 
the RP11 462G12.2-miR 744 5p-IQSEC2 regulatory 
axis to affect NSCL/P development61. The functional
consequences illustrated an SNP in lncRNA leading
to NSCL/P and also proved that lncRNA, miRNA and 
genes constituted a complicated and coordinative regu-
latory network.

Conclusion and future perspectives

The past decades have seen a series of remarkable dis-
coveries in human genetic variants related to NSCL/P 
through genes, pathways and GWAS strategies. The
future of NSCL/P research is likely to be characterised 
by three aspects. The first challenge is to understand the 
functional consequences of these SNPs and to accurately 
elucidate the biological mechanism in the ‘post-GWAS’
era62. Second, next-generation sequencing (NGS)
efforts are necessary to uncover rare variants that play

an important role in NSCL/P41. Third, the combination
of whole-genome surveys of genetic variation and mul-
tiomics data will show significant value for making new 
fundamental discoveries in human genetics58. 
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