AGE ESTIMATION AND GENDER DETERMINATION USING DIGITAL MEASUREMENTS AND FRACTAL ANALYSIS BY

ORTHOPANTOMOGRAM – A PRELIMINARY RETROSPECTIVE STUDY

Dr.Nivethitha Nagarajan BDS^[1]; Prof.Dr.Jayachandran Sadaksharam, MDS, PhD, FDS RCPS (Glasgow)^[2]; Dr.Sophia Jeba Priya MDS^[3] Department of Oral Medicine and Radiology, Tamil Nadu Government Dental College and Hospital, India (Affiliated to TN Dr. MGR Medical University)

Background

Age estimation and gender determination of the skeletal remains are of paramount importance in forensic dentistry ^[1,2]

The mandible is largely dimorphic and recovered intact. Hence digital analysis using orthopantomogram and pattern analysis using fractal may aid as a potential tool for forensic detrmination

Aim and Objectives

Age estimation and gender determination using digital measurements and fractal dimension (FD) analysis

- Upper ramus breadth (left and right)
- Lower ramus breadth (left and right)
- Gonial angle (left and right)
- Coronoid height (left and right)
- Condylar height (left and right)
- FD of condyle (left and right)
- FD of parasymphysis (left and right)
- FD of angle (left and right)

Materials and Methods

Group

40-49

Group 50-59

Male

(Age)

48

54

58

Female

(Age) 15

19

24 29

35

39

42

48

54

58

• Samp	le size	(n) = 20
--------	---------	----------

 10 males and 10 females 	Group 10-19	15
		19
 Age correlation done 	Group	24
 Orthopantomogram 	20-29	29
	Group 30-39	35
Current: 8 mA		39
Valtager 6 1/V	C	40

Voltage: 6 4kV Time: 14.1 s

Digital measurements :

SIDEXIS XG- Sirona - Orthopantomogram

Fractal analysis:

ImageJ software [1.46r -National Institute of Health, USA – Java 1.6.0_20 (32-bit); 428 commands; 58 macros] ^[3,4]

Bivariate correlation - AGE

Variables significant with age	Pearson's correlation
Right gonial angle	-0.932
Left gonial angle	-0.936

Multiple regression analysis Age =641.32 - [(5.008×Value of left gonial Angle)]

Discriminant analysis - GENDER

Variables significant with gender	p value
Condylar height (right and left)	<0.001
Coronoid height (right and left)	<0.001

Discriminant function formula / Wilks' lambda analysis

- 0.94.9 + (0.55* R condylar height) – (0.059*L condylar height) – (0.061*L coronoid height) - (0.019*R coronoid height)]

If the value of the equation is closer to 3.379, the gender is male, and if the value is closer to -3.379, the gender is predicted as female.

Fractal analysis

Gender – Independent t-test Age – Pearson's correlation

Variables significant with age	p value
Right condyle	0.002
Left condyle	0.002

Discussion

with age and were included in linear regression.

revealed change by 87.6%. predicted age were strongly correlated (r=0.936). • The height of the condyle and coronoid were significantly different between the gender groups. • Wilks' lambda being closer to zero signifies the can serve as a potential forensic tool in the future validity of the model in predicting gender. The fractal dimension values of parasymphysis and

Results and Statistics

VARIATION OF FACTORS IN MANDIBLE WITH GENDER

Conclusion and future scope

• The gonial angles correlated strongly inversely • The condylar/coronoid height can aid as an adjunct forensic tool for gender determination and gonial • R² value denoted the variance in the age as angle for age estimation by further analysis including the geographic and regional variations. • The bivariate test shows that actual age and • The condylar bone density patterns and alterations with age can be considered as a factor in forensic analysis even with remnants of the mandible. • Hence, digital measurements and fractal analysis

- angle were greater than of the condyle in the females compared to males.
- The Pearson's correlation shows that FDs of the condyles (left and right) were significantly inversely correlated with age.

Limitations

- Superimposition in 2D radiographs
- Inter-observer variations and geographic variations
- Relatively small sample size (n=20)

References

1. Behl AB, Grewal S, Bajaj K, Baweja PS, Kaur G, Kataria P. Mandibular ramus and gonial angle-Identification tool in age estimation and sex determination: A digital panoramic radiographic study in North Indian population. J Indian Acad Oral Med Radiol 2020;32:31-6.

2. Taleb NSA, Beshlawy ME. Mandibular ramus and gonial angle measurements as predictors of sex and age in an Egyptian population sample: A digital panoramic study. J Forensic Res 2015;6:308.

3. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:628-35

4. Kato, C.N.; Barra, S.G.; Tavares, N.P.; Amaral, T.M.; Brasileiro, C.B.; Mesquita, R.A.; Abreu, L.G. Use of fractalanalysis in dental images: A systematic review. Dentomaxillofac. Radiol.2019, 20180457