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Objective: To develop a risk score model based on drug-sensitivity-related genes to predict the prognosis of patients with 
oral squamous cell carcinoma (OSCC).

Methods and Materials: In this study, transcriptome from OSCC patients was downloaded from the Cancer Genome Atlas 
(TCGA) and International Cancer Genome Consortium (ICGC) databases, and differential gene expression analysis was per-
formed using R’s ‘limma’ package. LASSO Cox regression identified key prognostic genes. We stratified patients into low- and 
high-risk groups and estimated survival rates using Kaplan-Meier. Gene set enrichment analysis (GSEA) and immune infiltra-
tion analysis were conducted to understand the potential pathways and tumour microenvironment. A nomogram model was 
constructed for prognosis prediction.

Results: Our study identified 118 candidate genes from three data sets and narrowed them down to four prognostic genes 
(IGF2BP2, PLAU, CEP55, CMYA5) using univariate Cox regression and LASSO Cox regression. A risk score model was developed 
which could predict patient prognosis. The model’s prognostic value was independent of age, gender, and stage. A nomo-
gram model incorporating risk score and age was constructed for personalised survival prediction. Tumour mutation burden 
analysis showed that the mutation rate of TP53 was higher in the high-risk group. Immune landscape analysis uncovered 
distinct immune cell infiltration patterns and immune checkpoint expression levels between different risk groups, suggest-
ing implications for immunotherapy strategies.

Conclusion: The risk score model constructed using drug-sensitivity-related genes IGF2BP2, PLAU, CEP55, and CMYA5 may 
predict the prognosis of OSCC patients.
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Oral squamous cell carcinoma (OSCC) is a cancer that origi-
nates in the squamous cells lining the oral cavity, includ-

ing the lips, tongue, gums, cheeks and throat. Squamous cell 
carcinoma is the most common type of oral cancer.25 OSCC is a 
significant global health concern, with the incidence and mor-
tality ranking 16th in the world.31 It is more prevalent in older 

individuals, particularly those over 45 years of age, and it is 
more common in men than women.1 Risk factors encompass 
the use of tobacco products, excessive alcohol intake, and in-
fection with the human papillomavirus (HPV).43 Moreover, in-
creasing evidence indicates that periodontal diseases (such as 
periodontitis) are significantly associated with the develop-
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ment of OSCC.34,47 Periodontal pathogens such as Porphyro-
monas gingivalis and Fusobacterium nucleatum are associated 
with the cancerous state.2,16 The 5-year mortality rate for OSCC 
is close to 50% despite the medical development in recent dec-
ades.9 The prognosis for OSCC depends on factors such as the 
stage at diagnosis, the overall health of the patient, and the 
effectiveness of the chosen treatment. About half of OSCCs are 
diagnosed in advanced stages.36 Early detection, prognosis 
prediction, and treatment may generally result in better out-
comes,29 and risk stratification plays a crucial role in guiding 
treatment decisions, allocating resources, and selecting pa-
tients for inclusion in clinical trials.28

Drug resistance in OSCC refers to the ability of cancer cells 
within the oral cavity to withstand the effects of therapeutic 
drugs, leading to a reduced or lost response to treatment. 
OSCC therapy faces a significant challenge with drug resist-
ance, as this often leads to treatment failure, which in turn can 
cause the tumour to recur and potentially metastasise to other 
parts of the body. This phenomenon poses a significant chal-
lenge in the management of OSCC and other cancers, as it can 
restrict the efficacy of chemotherapeutic and targeted treat-
ment approaches.41 Understanding the mechanisms and fac-
tors contributing to drug resistance is crucial for developing 
more effective treatment strategies. The development of drug 
resistance in OSCC is complex, involving processes such as the 
expulsion of drugs from cells, the transformation of epithelial 
cells into mesenchymal cells, the repair of DNA damage, and 
autophagy.24 In this research, we aimed to explore the drug 
sensitivity-related genes in OSCC patients to contribute to the 
treatment by providing information on drug sensitivity. Fur-
thermore, because a single prognostic factor is insufficient for 
adequate risk stratification, there is growing interest in the de-
velopment of multivariate prognostic models that quantita-
tively integrate two or more prognostic factors.26 We would try 
to construct a prognostic model for OSCC patients based on 
the identified drug-sensitivity-related genes.

MATERIALS AND METHODS

Research Objects
The mRNA expression profiles, along with corresponding clin-
ical information, from 306 OSCC patients with complete sur-
vival details were obtained from TCGA database (https://tcga-
data.nci.nih.gov/tcga/). Clinical details are available in Table 1, 
encompassing 307 tumour samples and 30 adjacent normal 
tissue samples. Additionally, mutation annotation format 
(maf) files for 311 OSCC patients were obtained from TCGA for 
subsequent analysis. OSCC data from the International Cancer 
Genome Consortium (ICGC) database were also downloaded 
for survival validation, comprising 40 samples with survival in-
formation. Datasets from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/) were retrieved, 
including GSE42743 (from Affymetrix Human Genome U133 
Plus 2.0 Array) and GSE75538 (from Illumina HumanHT-12 WG-
DASL V4.0 R2 expression beadchip). GSE42743 consisted of 74 
OSCC samples and 29 normal samples, while GSE75538 com-
prised 14 OSCC samples and 14 normal adjacent samples.

Differential Gene Expression Analysis
All statistical analyses were done in the R language (4.2.0). For 
the analysis of differentially expressed genes (DEGs), the 
‘limma’ function package in R language (version 3.52.0) 27 was 
applied with DEGs screened based on the criteria of |Log2FC| >2 
and a P value <0.05.

Functional Enrichment Analysis
Subsequently, we performed enrichment analysis including 
gene ontology (GO) terms (biological process (BP), molecular 
function (MF), and cellular component (CC)), and KEGG path-
ways for the obtained DEGs using the ‘clusterProfiler’ function 
package (version 4.7.1.002).44 Entries or pathways with a P value 
<0.05 were considered statistically significantly enriched.

Culture of Cell Lines
In this study, two human cell lines were used: HOEC 
(BFN6072012669, BlueFBio Life Science, Shanghai, China), a 
normal human oral epithelial cell line, and SCC-4 (BNCC340434, 
BeNa Culture Collection, Beijing, China), an epithelial cell line 
extracted from the oral cavity of a 55-year-old male diagnosed 
with squamous cell carcinoma. HOEC cells were cultured in a 
high-glucose DMEM medium (PM150210, Procell Life Science & 
Technology Co, Wuhan, China) with the addition of 1% P/S 
(P1400, Procell, Wuhan, China) and 10% foetal bovine serum 
(FBS) (164210, Procell, Wuhan, China). SCC-4 cells were cul-
tured in 90% DMEM-H/F12 (11330-032, Gibco (Grand Island 
Bi o logical Company), Waltham, US) supplemented with 10% 
FBS, 400 ng/ml hydrocortisone (IH0100, Beijing Solarbio Sci-
ence & Technology Co, Beijing, China). Cells were maintained 
at 37°C in a humidified incubator (MCO-18AC, Sanyo Electric 
(China) Co, Hong Kong, China) with 5% CO2.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated from cells using the TRNzol Universal 
reagent (DP424, Tiangen Biotech Co., Beijing, China). RNA in-
tegrity and concentration were determined using the Jenway 
Genova Nano UV spectrophotometer (Cole-Parmer, London, 
UK). Qualified RNA underwent reverse transcription with the 
StarScript III RT Mix (A230, Jiangsu Curovax Biotech Co., Su-
zhou, China). PCR was then conducted with the 2×RealStar 
Power SYBR Mix (A311, Suzhou, China) on a qPCR system (IQ5, 
Bio-Rad Laboratories, Hercules, US) according to the following 
thermal profile: initial denaturation at 95°C for 10 min, fol-
lowed by 40 cycles of 95°C for 15 s and 60°C for 1 min. GAPDH 
served as the reference gene, with primer sequences detailed 
in Table 2. Triplicate reactions were run for each sample, and 
mRNA levels were quantified using the 2-ΔΔCT method.

Least Absolute Shrinkage and Selection Operator 
(LASSO) Cox Regression Analysis
Univariate Cox regression analysis was performed on the sam-
ples, taking gene expression values into account, and the P value 
was used as a criterion to identify genes that are statistically sig-
nificantly significantly associated with patient outcomes. Subse-
quently, the LASSO Cox regression method was applied to fur-
ther narrow down the list of genes that have a meaningful impact 
on prognosis, utilising the ‘glmnet’ package (version 4.1-4).6
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Table 1 ClinicopathologicalcharacteristicsofOSCCpatientsfromTCGAdatabase.

Characteristics

Patients (N = 306)

NO. % P value
Gender Female 102 33.33% 0.7388

Male 204 66.67%
Age ≤61(Median) 157 51.31% 0.9791

>61(Median) 149 48.69%
Grade GX 3 0.98% 0.8644

G1 49 16.01%
G2 191 62.42%
G3 62 20.26%
Unknown 1 0.33%

Survival Time Long (>5years) 31 10.13% 0.4252
Short (<5years) 275 89.87%

OS status Dead 143 46.73% 0.9479
Alive 163 53.27%

M M0 289 94.44% 0.4619
M1 2 0.65%
Mx 12 3.92%
Unknown 3 0.98%

N N0 160 52.29% 0.7329
N1 56 18.30%
N2 76 24.84%
N3 2 0.65%
Nx 9 2.94%
Unknown 3 0.98%

T T1 18 5.88% 0.5887
T2 97 31.70%
T3 73 23.86%
T4 110 35.95%
Tx 5 1.63%
Unknown 3 0.98%

Primarysite Anteriorfloorofmouth 2 0.65% 0.2139
Borderof tongue 1 0.33%
Cheekmucosa 19 6.21%
Floorof mouth 51 16.67%
Gum 8 2.61%
Hardpalate 4 1.31%
Lip 3 0.98%
Lowergum 2 0.65%
Mouth 20 6.54%
Overlappinglesionoflip, oral cavity and pharynx 69 22.55%
Palate 1 0.33%
Tongue 125 40.85%
Uppergum 1 0.33%

Table 2 Primer sequences for RT-PCR

Genes Forward Primer (5’-3’) Reverse Primer (5’-3’) Product

IGF2BP2 AAGCTAAGCGGGCATCAGTT CGCAGCGGGAAATCAATCTG 176

PLAU CCAAAATGCTGTGTGCTGCT TTGTCCTTCAGGGCACATCC 145

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 172
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The genes that were ultimately selected were then used to 
compute an individual risk score for each sample, following a 
specific formula:

Risk Score =          Coefi * Xi∑
i=1

n

Here, Coefi refers to the risk coefficient for each factor as calcu-
lated by the LASSO Cox model, while Xi represents the expres-
sion level of each factor, specifically the gene expression levels 
in this study.

Survival Analysis
Patients were then stratified into OLRP (OSCC low-risk group) 
and OHRP (OSCC high-risk group) based on the median risk 
score. Using the R packages ‘survival’ (version 3.3-1) and ‘sur-
vminer’ (version 0.4.9), we estimated the overall survival rates 
for different groups based on the Kaplan–Meier (KM) method 
and assessed the significance of the differences in survival 
rates between groups using either the log-rank or Breslow 
tests. Additionally, we analysed whether the risk score could 
independently predict patient survival from other factors us-
ing a multivariate Cox regression model.

Gene Set Enrichment Analysis (GSEA)
The R package ‘limma’ was utilised to perform differential ex-
pression analysis between OLRP and OHRP. The resulting DEGs 

were then subjected to GSEA using the R package ‘clusterPro-
filer’.44 KEGG pathways with a normalised enrichment score 
(NES) greater than 1 and a P value less than 0.05 were selected 
to identify statistically significantly enriched pathways.

Immune Infiltration Analysis
CIBERSORT, a computational method for assessing the relative 
abundance of 22 different immune cell types within a cancer 
sample, was employed to calculate the immune cell propor-
tions for each cancer specimen. The ‘estimate’ function from 
the corresponding package (version 1.0.13) was utilised to 
compute the immune scores for the samples.

Nomogram Model for Prognosis Prediction
Nomograms have been extensively utilised for predicting can-
cer prognosis. To forecast the 1-, 3-, and 5-year survival proba-
bilities for patients, a nomogram was constructed using the 
R language’s ‘rms’ package, based on the independent prog-
nostic factors identified through multivariate Cox regression 
analysis. The calibration curve of the nomogram was also plot-
ted to observe the relationship between the predicted proba-
bilities and the actual incidence rates.

Statistical Analyses
Comparisons between patients from different risk level groups 
were analysed using Chi-square tests or Fisher’s exact tests. 

a

Fig 1a to f Candidate genes screening and their potential functions. (a to c) Volcano plots of differential expression analysis based on TCGA-OSCC, 
GSE42743, and GSE75538 datasets. (d) Intersection of DEGs from TCGA-OSCC, GSE42743, and GSE75538 data sets. (e) Top 10 significantly enriched GO 
terms of the three aspects on 118 candidate genes. (f) Top 20 significantly enriched KEGG pathways on 118 candidate genes.
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Fig 2a to h  
Construction of 
prognostic 
prediction model for 
OSCC patients.  
(a) Univariate Cox 
regression analysis 
of 13 genes.  
(b) Correlation 
between expression 
levels of 13 genes 
and drug sensitivity. 
(c and d) Determina-
tion of an optimal 
number of genes to 
be used in the 
model. (e to g) 
Expression levels of 
IGF2BP2, PLAU, 
CEP55, and CMYA5 in 
TCGA-OSCC, 
GSE42743, and 
GSE75538 data sets. 
(h) Expression levels 
of IGF2BP2 and 
PLAU in qRT-PCR 
experiment.  
(* P <0.05; ** 
P <0.01; **** 
P <0.0001).
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Fig 3 Validation of the 
risk score model for OSCC 
patients. (a) KM curves 
between OLRP and OHRP 
based on TCGA-OSCC data 
set. (b) Prognostic feature 
distribution map, patient 
survival map and heatmap 
of IGF2BP2, PLAU, CEP55, 
and CMYA5’s expression 
levels based on TGCA-
OSCC data set. (c) KM 
curves between OLRP and 
OHRP based on the 
validated data set 
ICGC-meta. (d) Prognostic 
feature distribution map, 
patient survival map and 
heatmap of IGF2BP2, 
PLAU, CEP55, and CMYA5’s 
expression levels based on 
ICGC-meta dataset. (f to h) 
Risk score in OSCC 
samples of different 
genders, different ages, 
and different stages, 
respectively (** P <0.01, 
*** P <0.001).
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Boxplots between two groups were generated using t-tests. A 
P value of less than 0.05 was considered to indicate statistical 
significance.

RESULTS

Candidate Gene Screening and Their Potential 
Functions
We screened for DEGs between OSCC and normal groups 
based on three data sets. In the TCGA-OSCC data set, there 
were a total of 5780 DEGs, with 3063 upregulated genes and 
2717 downregulated genes in OSCC samples compared to nor-
mal samples (Fig 1a, Table S1); in the GSE42743 data set, there 
were 682 DEGs, including 275 upregulated genes and 407 
downregulated genes (Fig 1b, Table S1); in the GSE75538 data 
set, 305 DEGs were identified, among which 73 were upregu-
lated and 232 were downregulated (Fig 1c, Table S1).

The intersection of the DEGs obtained from each data set 
yielded 118 shared genes (Fig 1d) as candidate genes. Subse-
quently, we performed GO and KEGG enrichment analyses on 
these 118 candidate genes. It was found that the candidate 
genes were statistically significantly enriched in GO terms such 
as ‘muscle system process’, ‘contractile fibre’, and ‘actin bind-
ing’, as well as in KEGG pathways like ‘motor proteins’. The top 
10 most statistically significantly enriched GO terms are shown 
in Figure 1e, and the 20 significantly enriched KEGG pathways 
are shown in Figure 1f. Detailed results of the GO and KEGG en-
richment analyses can be found in Table S2.

Construction of a Prognostic Prediction Model for 
OSCC Patients
Based on the 118 candidate genes, we further narrowed down 
the number of target genes by univariate Cox regression ana-

lysis, and calculated the hazard ratio (HR) of each gene, result-
ing in 13 genes by the criteria of P <0.05 (Fig 2a). Subsequently, 
we analysed the drug sensitivity of 13 genes and identified the 
top four genes that were positively correlated with drug sensi-
tivity (Fig 2b). We then conducted LASSO Cox regression ana-
lysis, and based on the lambda values corresponding to differ-
ent numbers of genes in the LASSO Cox analysis, we determined 
the optimal number of genes to be four (Figs 2c and 2d, where 
the lambda value was the smallest). The four genes were 
IGF2BP2, PLAU, CEP55, and CMYA5. We analysed the expression 
differences of these four genes between tumour patients and 
normal samples in the TCGA-OSCC data set (Fig 2e), GSE42743 
(Fig 2f), and GSE75538 (Fig 2 g) data sets. The results showed 
that IGF2BP2, PLAU, and CEP55 were found to be statistically 
significantly higher expressed in tumours than in normal sam-
ples, while CMYA5 was statistically significantly lower ex-
pressed in tumours. The higher expression levels in the tumour 
of IGF2BP2 and PLAU were validated by qRT-PCR (Fig 2h).

Genes’ expression levels were then weighted according to 
the regression coefficients from the LASSO Cox regression ana-
lysis to establish a risk score model for predicting patient prog-
nosis. Twhe risk score was calculated as follows: risk score = 
(IGF2BP2 × 0.07528122) + (PLAU × 0.12344856) + (CEP55 × 
0.13650156) + (CMYA5 × 0.05853046). We calculated the risk 
score for each patient and regrouped the samples in the TCGA 
data set and ICGC validation set into OLRP and OHRP.

Validation of the Risk Score Model for OSCC Patients
To further elucidate the prognostic value of the risk score, we 
conducted additional analyses across various clinical and 
pathological parameters of OSCC patients. In all TCGA-OSCC 
patients, a higher risk score was associated with a lower sur-
vival rate, and the KM curves showed a statistically signifi-
cantly difference between OLRP and OHRP (Fig 3a). Addition-

b

aFig 4 Nomogram model 
based on risk score and 
age for OSCC prognostic 
prediction. (a) A nomo- 
gram constructed by risk 
score and age to facilitate 
personalised risk 
assessment for OSCC 
patients. (b) The 
calibration curve of the 
nomogram for the 1-year, 
3-year and 5-year OS 
predictions for OSCC 
patients.

d
c
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Fig 5 Potential pathways functioning differentially between OSCC samples with high- and low-risk scores. (a) Top 10 enriched KEGG pathways 
between OLRP and OHRP by GSEA analysis. (b) GSEA analysis between OLRP and OHRP.

Fig 6 The tumour mutation burden (TMB) in OSCC with high-  
and low-risk scores. (a and b) TMB analysis in OHRP and OLRP. 
(c) Correlation between TMB and risk score.

ally, the prognostic feature distribution map displayed that 
risk score and the expression of IGF2BP2, PLAU, CEP55, and 
CMYA5 were correlated with lower patient survival (Fig 3b). Si-
multaneously, the results from the validation set ICGC-meta 
indicated a statistically significantly higher survival rates in 

OLRP compared to OHRP (Fig 3c). The similar pattern of risk 
score, gene expression, and patient dead or alive status was 
also detected in this validation data set (Fig 3d).

We included age, gender, stage, and risk score as four fac-
tors in a multivariate Cox regression analysis to determine if 
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the risk score is an independent prognostic indicator. The re-
sults showed that the risk score and age were statistically sig-
nificantly associated with overall survival, with OLRP samples 
having a lower risk of death, making it a reliable prognostic 
factor (HR = 3.34, 95% CI: 1.91–5.8, P <0.001) (Fig 3e). Further-
more, no statistically significant differences in risk score were 
found between samples of different genders (Fig 3f), samples 
from patients ≤61 years old and those >61 years old (Fig 3 g), 
or samples from different stages (Fig 3h), indicating that the 
risk score could serve as an independent indicator to predict 
the prognosis of patients with OSCC.

Nomogram Model Based on Risk Score and Age for 
OSCC Prognostic Prediction
Next, building upon the identification of the risk score and age 
as independent prognostic factors, we constructed a nomo-
gram model (Fig. 4a) to facilitate personalized risk assessment 
by estimating overall survival (OS) for each patient. For each 
individual, two vertical lines are drawn to determi-ne the 
points assigned to each factor in the nomogram. The total 
score, indicated on the ‘Total Points’ axis, is then used to pro-
ject a horizontal line that corresponds to the probabilities of 
1-year, 3-year, and 5-year overall survival in OSCC patients. The 
calibration curves for the 1-, 3-, and 5-year OS predictions 
closely approximate the ideal reference line (a 45-degree line 
through the origin), indicating strong agreement between the 
model’s predictions and actual outcomes over these time in-
tervals (Figs. 4b–4d).

Potential Pathways Functioning Differentially Between 
OSCC Samples with High- and Low-Risk Scores
To explore potential pathways functioning differentially be-
tween OSCC samples with high- and low-risk scores, we con-
ducted GSEA between OLRP and OHRP groups based on KEGG 
pathways. The results showed that 128 KEGG pathways were 
statistically significantly enriched with a threshold of |NES| >1 
and P value <0.05. Among these, the top ten KEGG pathways 
with the lowest P values were visualised (Fig 5a) (Table S3). Path-
ways such as bile secretion, synaptic vesicle cycle, ABC trans-
porters, fatty acid degradation, and collecting duct acid secre-
tion were found to be statistically significantly activated (Fig 5b).

The Tumour Mutation Burden (TMB) In OSCC Samples 
with High- and Low-Risk Scores
The TMB reflects the cumulative extent of mutations in tumour 
cells and is closely associated with the biological characteris-
tics of cancer and has been recognised as a crucial factor influ-
encing the prognosis and treatment outcomes of cancer pa-
tients.30 By comparing the differences in TMB between OHRP 
and OLRP, we can explore tumour biology features relevant to 
risk groups, aiding in a deeper understanding of the mechan-
isms underlying OSCC development. We observed differences 
in somatic mutations in the TCGA-OSCC cohort, calculating 
TMB of OHRP and OLRP samples. The mutation analysis re-
vealed that the mutation rate of TP53 gene was 81% in OHRP 
(Fig 6a), while in OLRP, its mutation rate was 59% (Fig 6b). The 
TMB and risk score results indicated a negative correlation be-
tween TMB and risk score (Fig 6c).

Immune Landscape Analysis of High- and Low-Risk 
Score OSCC Samples
The tumour microenvironment (TME) is also a key factor in drug 
resistance.5 Researching infiltration proportions of different im-
mune cell types between high- and low-risk groups is essential 
to understanding the impact of risk stratification on the TME 
and immune response. Investigating these differences can pro-
vide insights into the potential correlation between immune 
cell infiltration patterns and the level of risk in OSCC patients. 
Using the CIBERSORT algorithm, we analysed the differences in 
immune cell infiltration among the 22 immune cell types be-
tween OLRP and OHRP samples. The results showed statisti-
cally significant differences in the infiltration proportions of six 
immune cell types between OLRP and OHRP samples. The infil-
tration proportion of Macrophages M0 was statistically signifi-
cantly higher in OHRP, while plasma cells, CD8 T cells, activated 
CD4 memory T cells, follicular helper T cells, and Tregs were 
statistically significantly lower in OHRP than OLRP (Fig 7a). Fur-
thermore, through correlation analysis, the risk score was found 
to be significantly negatively correlated with plasma cells, CD8 
T cells, activated CD4 memory T cells, follicular helper T cells, 
and Tregs, and significantly positively correlated with mac-
rophages M0 (Fig 7b). The stromal score was statistically signifi-
cantly higher in OHRP compared to OLRP samples (Fig 7c).

Immune checkpoint genes play a pivotal role in regulating 
the immune response, and their expression levels can impact 
the effectiveness of immunotherapy. Studying these genes in 
different risk groups may help identify potential differences in 
immune evasion mechanisms and can guide the development 
of personalised treatment strategies. In this study, expression 
analysis of nine immune checkpoint genes (PD-1 (PDCD1), CTLA4, 
PD-L1 (CD274), PD-L2 (PDCD1LG2), CD86, LAG3, TIGIT, CD80) be-
tween OLRP and OHRP revealed significant differences in the 
expression of four immune checkpoint genes (PD-L1 (CD274), 
PD-L2 (PDCD1LG2), CD80, CD86), with OHRP samples showing 
significantly higher expression than OLRP samples (Fig 7d).

DISCUSSION

Substantial progress has been made in biological research, as 
well as in clinical diagnostics and treatments, in recent 
years.13,15 However, the development of resistance to clinical 
drugs continues to pose a significant obstacle to the success of 
therapies for OSCC. The existing staging system for OSCC has 
certain limitations, primarily because it focuses mainly on the 
characteristics of the disease itself, neglecting other factors 
that influence prognosis. There is a pressing need for more 
personalised prognostic models that incorporate a broader 
range of variables.45 In this research, a prognostic model for 
OSCC patients was established by use of drug-sensitivity-re-
lated genes IGF2BP2, PLAU, CEP55, and CMYA5, where high-risk 
scores indicated poor prognosis.

IGF2BP2, or insulin-like growth factor 2 mRNA binding pro-
tein 2, is an RNA-binding protein that plays a crucial role in 
post-transcriptional regulation, influencing mRNA stability and 
translation,40 and has been implicated in various physiological 
processes and diseases, including OSCC. Proteins encoded by 
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Fig 7a to c Immune landscape analysis of high- and low-risk score OSCC samples. (a) Infiltration proportion of different types of immune cells in 
OHRP and OLRP samples. (b) Correlation between immune cells infiltration levels and risk score. (c) StromalScore, ImmuneScore, and ESTIMATEScore 
in OHRP and OLRP. (d) Expression levels of immune checkpoint genes in OHRP and OLRP (* P <0.05; ** P <0.01; *** P <0.001; **** P <0.0001).

a

b

c d
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IGF2BP play a substantial role in the metabolic processes of tu-
mours, with particular emphasis on their involvement in the 
metabolic pathways of head and neck squamous cell carci-
noma (HNSCC).39 Corresponding to our research, IGF2BP2 has 
been found to be upregulated in OSCC promoting OSCC pro-
gression in many other studies. The proliferation, invasion, and 
migration of OSCC cells can be inhibited by knockdown of IG-
F2BP2.46 Loss of Igf2bp2 leads to increased release of inflamma-
tory cytokines, thereby exacerbating periodontitis.22 Periodon-
titis was suspected to be associated with OSCC.10 Moreover, this 
gene has been identified as a prognostic marker in OSCC associ-
ated with immunity and OSCC genesis,35 and its expression is 
able to upregulate EREG resulting in OSCC cell invasion and ep-
ithelial-mesenchymal transition (EMT) promotion.19 In laryn-
geal squamous cell carcinoma (LSCC), IGF2BP2 can regulate the 
modification of N6-methyladenosine (m6A) which is a key fac-
tor in LSCC genesis. Overexpressed IGF2BP2 in LSCC has been 
found to promote LSCC cell proliferation and invasion in vitro.33

The PLAU gene, encoding the urokinase-type plasminogen 
activator (uPA), is a crucial genetic element involved in various 
physiological processes, including fibrinolysis, tissue remodel-
ling, and cell migration.11 It promotes the development of many 
cancers, such as cholangiocarcinoma,12 cervical cancer,8 and 
OSCC. In LSCC, stability of PLAU is regulated by a m6A methyl-
transferase WTAP resulting in cancer progression.20 As same as 
IGF2BP2, PLAU can also promotes cell proliferation and EMT in 
HNSCC that PLAU silencing inhibits the migration of OSCC Stage 
4. It has been identified as an independent prognostic marker 
for HNSCC patients with higher expression level representing 
poorer prognosis. The expression level of PLAU is negatively 
correlated with CD4 T cell and Tregs.18 The risk score in our 
study also negatively associates with CD4 T cell and Tregs.

CEP55 (centrosomal protein 55) is essential for cell division 
and cytokinesis, playing a key role in regulating centrosome dy-
namics and cell cycle progression.17 It is often expressed lowly in 
most normal human tissues.7 Its overexpression causes genomic 
instability, which is a characteristic of cancer, such as breast can-
cer,14 oesophageal squamous cell carcinoma,42 etc. High expres-
sion level of CEP55 is related to poor prognosis of OSCC patients, 
independent of pathological stages or grades (32 as our risk 
score). As with IGF2BP2 and PLAU, CEP55 has been identified as a 
marker for HNSCC as well.37 CMYA5, namely cardiomyopathy-as-
sociated 5, is a gene associated with cardiomyopathies.21 CMYA5 
has been detected as a DEG between lymph node-positive and 
negative OSCC patients.23 The role CMYA5 plays in OSCC requires 
further research.

Patients with elevated tumor mutational burden (TMB) ex-
hibit higher response rates to immune checkpoint inhibitor (ICI) 
therapy compared to those with lower TMB levels in the context 
of cancer treatment. A prognostic model based on TMB-related 
genes has the potential to predict OSCC prognosis and effectively 
stratify patients.38 Cigarette smoking has been investigated to as-
sociate with an elevated occurrence of TP53 mutations, resulting 
in the inactivation of TP53 and an augmented likelihood of devel-
oping oral tumours,3 which is corresponding to our research that 
the mutation rate of TP53 is higher in OHRP. The expression levels 
of immune checkpoints in OHRP are significantly higher than in 
OLRP, suggesting higher response rates to ICI therapy.

While this study has developed a personalised prognostic 
model for OSCC, several limitations must be acknowledged. 
Firstly, the reliance on public data from TCGA and ICGC data-
bases may introduce biases that are not accounted for. Sec-
ondly, the generalizability of our findings to diverse popula-
tions is uncertain, as the cohorts used in this study may not 
represent the global demographic distribution. Thirdly, the 
prognostic model, although validated, requires further valida-
tion in prospective clinical trials to confirm its predictive accur-
acy and utility in real-world settings. Additionally, the mechan-
isms underlying the identified genes’ roles in OSCC progression 
and drug resistance are not fully elucidated and warrant fur-
ther mechanistic studies.

CONCLUSIONS

In conclusion, this study has developed a prognostic model for 
OSCC patients by integrating drug sensitivity-related genes IG-
F2BP2, PLAU, CEP55, and CMYA5. The model, which assigns a 
risk score to patients, has demonstrated the ability to separate 
patients into high- and low-risk groups, with a higher risk score 
correlating with a poorer prognosis. The identified genes play 
significant roles in tumour progression and have been associ-
ated with various cancer-related processes. The immune land-
scape analysis has also provided insights into the differential 
immune cell infiltration patterns between high- and low-risk 
OSCC samples, which could be crucial for understanding the 
tumour microenvironment and developing targeted immuno-
therapies. The nomogram model constructed in this study of-
fers a personalised approach to predicting survival probabili-
ties and could serve as a tool in clinical decision-making for 
OSCC treatment. Overall, this research contributes a step to 
the advancement of personalised medicine in OSCC by provid-
ing a comprehensive prognostic model that considers both 
genetic and immunological factors.
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